$$
\text { Math } 206 \text { - Zeoker I }
$$

January 6,2020

므 Logistics

- Zoom lectures WF 1-2:15pM.
- Attendance vs. Homework / Final project
- Prerequisites
- A.G. at the level of Math 203
- cohomologj of sheaves
- ample, very ample, basepointfree...
- Chow, Churn classes
- Grothendieck - Riemann - Pooh...

Refrences
Huybrochts

Zectures on $k 3$ surfaces
Barth - Hulok - Potore - van do Von

Compact Complex Surfaces, VII

Beauville ...

Ge'omstric deo surfaces k3: modules of
périods

Gourse out hre

IG $=x a m p l=0$ of $k 35$
(G) lisear revics on K3s

Iti] $=$ lliptic K3s

IV moduli of K3s.
$\sqrt{21}$ tautological classes ovor the moduli space

II What are K3 surfaces

Definition X smooth projective surface / L
such that $K_{x} \cong \sigma_{x}$ and $H^{\prime}\left(x, \sigma_{x}\right)=0$.

$$
q=\operatorname{dim} H^{\prime}\left(x, G_{x}\right)=\text { irregularity } .
$$

Examples II $x \longleftrightarrow \mathbb{R}^{3}, X=$ quartic surface
[ic) $\times \rightarrow \mathbb{R}^{2}$ double cover branched ooxtic
(tu) $\quad x \leftrightarrow \mathbb{P}^{5}, \quad x=Q, \infty Q_{2} \cap Q_{3}$

We well return to these examples in the next lecture.

Remark (analytic K3 surfaces)
On $=$ can study $x=$ complex manifold of dim 2 .
W. wall not consider theoc. Sin (1983): Kählor.

André Weil (1958): ... il s'agit des variétés kählériennes dites K3, ainsi nommées en l'honneur de Kummer, Kähler, Kodaira et de la belle montagne K2 au Cachemire...

Kummer

Kähler

Kodaira

J-low general are the surfaces we wish to stedy?

Tlassification of curves of gonus g.

$$
\begin{array}{ll}
& H^{0}(c, 2)=2, H^{\prime}(c, 2)=22, \\
g=0 & c \cong H^{2}(c, 2)=2 \\
g=9 & K_{c} \cong O_{c} \\
g=9 & \text { moot curres }
\end{array}
$$

Koofaira dimension Gonsider the smallest k such that

$$
\begin{aligned}
& \quad \frac{h^{0}\left(x, K_{x}^{Q m}\right)}{m^{k}} \text { boundod. } \\
& k=-\infty \quad c \cong \mathbb{P}^{\prime} \\
& K=0 \\
& c \text { gonus } 1 \\
& K=1 \quad c \text { gonus } g \geq 2 . \\
& \quad \operatorname{lndeed,} h^{0}\left(x, K_{x}^{\otimes m}\right)=1-g+m(2 g-2) \sim m^{k=1}
\end{aligned}
$$

Surfaces - Enrigues - Kodara classification
X minimal. Coarse classification:

$$
\begin{aligned}
& K=-\infty: \mathcal{Q}=0: \mathbb{T}^{2}, \quad F_{n}=\mathbb{P}\left(\theta_{0},+G_{p},(n)\right), n \neq 1 \\
& 2 \neq 0: x \rightarrow c \text { ruled surface } \\
& K=0: \angle K \text { surfaces }+ \text { others } \\
& \mathcal{K}=1: \quad \therefore \xrightarrow{\pi} c, \text { general sher is elliptic curve } \\
& K=2: x \text { surfaces of general typo }
\end{aligned}
$$

When $k=0$, finer classification:

$$
\text { - } K_{x} \cong \mathcal{O}_{x} \text { G } g=0: x=K_{3} \text { surface }
$$

(II) $q \neq 0: x=a b o l i a n$

$$
\cdot K_{x} \neq \mathcal{G}_{x}
$$

(Ii $2=0 \Rightarrow x=$ Enrigues surface, $x=K 3 / Z_{2}, K_{x}^{\oplus 2}=O_{x}$
[i] $2 \neq 0 \Rightarrow x=$ bielliptic surface, $K_{x}{ }^{\oplus m} \cong O_{x}$

$$
\begin{gathered}
m=2,3,4,6 \\
x=E \times F / 6, E, F=\text { =lliptio curves }
\end{gathered}
$$

G finite group, $G \subseteq E$ auto by translations

Why study ks surfaces?

II interesting for both classical \&
not -so-classical algribraic geometry
[II) arithmetic, differential geometry, to pology,
dynamics

It is hard to match the geometric beauty of K3 surfaces

[2] What wall our attitude be?

Pursue analogies with curves. Such analogies wall bo
evident in the choice of results we wall cover:

IG Linear series
(G) Torelli the
[IIC) moduli theory

Remark A different possible comparison is be twoon K3 surfaces \& ab=lian surfaces.

Curves

- Let C be a smooth compact complex curve of genus g

$$
g=3
$$

- The topology of C is fixed by the genus

$$
H^{0}(C, \mathbb{Z})=\mathbb{Z}, \quad H^{1}(C, \mathbb{Z})=\mathbb{Z}^{2 g}, \quad H^{2}(C, \mathbb{Z})=\mathbb{Z}
$$

- The complex structure of X is allowed to vary

Moduli of curves

- \mathcal{M}_{g} is the moduli space of all smooth genus $g \geq 2$ curves

Selected facts about the moduli of curves

- \mathcal{M}_{g} is irreducible of dimension $3 g-3$
- smooth complex orbifold
- Pic $\left(\mathcal{M}_{g}\right)$ has rank 1

Cohomology

- Harer: cohomology stabilizes

$$
H^{k}\left(\mathcal{M}_{\infty}\right)=\lim _{g \rightarrow \infty} H^{k}\left(\mathcal{M}_{g}\right)
$$

- Mumford-Madsen-Weiss

$$
H^{\star}\left(\mathcal{M}_{\infty}, \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \ldots, \kappa_{i}, \ldots\right]
$$

- The universal curve $\pi: \mathcal{C} \rightarrow \mathcal{M}_{g}$ has $\pi^{-1}([C]) \simeq C$. Set

$$
\kappa_{i}=\pi_{\star}\left(c_{1}\left(\Omega_{\pi}\right)^{i+1}\right)
$$

Cohomology

- For finite g, define the tautological cohomology

$$
R^{\star}\left(\mathcal{M}_{g}\right)=\mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \ldots, \kappa_{i}, \ldots\right] / \text { relations }
$$

- There is odd cohomology and there are non-tautological classes

Structure of tautological rings

- Question: How do we get relations between the κ 's?
- Question: Can we write them in closed form?
- Question: Study the structure of the tautological rings?

Poincare Duality (PD)?

- Faber's conjectures

$$
\mathrm{R}^{k}\left(\mathcal{M}_{g}\right)=0 \text { for } k>g-2, \quad \mathrm{R}^{g-2}\left(\mathcal{M}_{g}\right)=\mathbb{Q}
$$

- perfect pairing

$$
\mathrm{R}^{k}\left(\mathcal{M}_{g}\right) \times \mathrm{R}^{g-2-k}\left(\mathcal{M}_{g}\right) \rightarrow \mathbb{Q}
$$

- evaluation of top monomials in κ 's

$$
\kappa_{a_{1}} \kappa_{a_{2}} \cdots \kappa_{a_{m}} \quad \text { for } \sum a_{i}=g-2
$$

Poincare Duality (PD)?

- however \mathcal{M}_{g} is not compact and not of dimension $g-2$
- any complete subvariety has dimension $\leq g-2$

Faber-Zagier relations

- consider two sets of formal variables

$$
p_{3}, p_{6}, p_{9}, \ldots \text { and } p_{1}, p_{4}, p_{7}, \ldots
$$

- consider two hypergeometric series

$$
A(t)=\sum_{k=0}^{\infty} \frac{(6 k)!}{(2 k)!(3 k)!} t^{k}, \quad B(t)=\sum_{k=0}^{\infty} \frac{(6 k)!}{(2 k)!(3 k)!} \frac{6 k+1}{6 k-1} t^{k}
$$

- $\Psi(t, p)=\left(1+t p_{3}+t^{2} p_{6}+\ldots\right) A(t)+\left(p_{1}+t p_{4}+t^{2} p_{7}+\ldots\right) B(t)$

Faber-Zagier relations

- Expand

$$
\log \Psi=\sum_{i, \sigma} c_{i, \sigma} t^{i} p^{\sigma}
$$

- for i in a suitable range, the coefficient of $t^{i} p^{\sigma}$ in the expression

$$
\exp \left(\sum_{i, \sigma} c_{i, \sigma} \kappa_{i} t^{i} p^{\sigma}\right)=0
$$

- the proof requires modern techniques

K3 Surfaces

- A K3 surface X is a simply connected smooth projective surface with $K_{X}=\mathcal{O}_{X}$

The topology of K3s

- The differentiable manifold underlying all $K 3$ surfaces is always the same
- Cohomology groups

$$
H^{0}(X, \mathbb{Z})=\mathbb{Z}, \quad H^{2}(X, \mathbb{Z})=\mathbb{Z}^{22}, \quad H^{4}(X, \mathbb{Z})=\mathbb{Z}
$$

Moduli space of K3s

- $\mathcal{F}_{2 \ell}$ is the moduli space of $K 3$ surfaces (X, H) of degree 2ℓ.
- X is a $K 3$ surface
- $H \rightarrow X$ is primitive ample line bundle, $H^{2}=2 \ell$
- dimension 19, not compact

Cohomology

Goal: Study the cohomology of $\mathcal{F}_{2 \ell}$

Question: Does the cohomology stabilize?

- No:

$$
\lim _{\ell \rightarrow \infty} \operatorname{dim} H^{2}\left(\mathcal{F}_{2 \ell}\right)=\infty
$$

- related to vector-valued cusp forms for metaplectic group

More on cohomology

- There is odd cohomology, e.g. for $\ell=1$

$$
P^{\text {odd }}\left(\mathcal{F}_{2}\right)=t^{27}+t^{31}+t^{33}+2 t^{35}+2 t^{37}
$$

Goal: Define tautological classes over $\mathcal{F}_{2 \ell}$

Goal: Find the structure of the tautological cohomology

Question: Construct algebraic non-tautological classes

κ-classes

- Let $\pi:(\mathcal{X}, \mathcal{H}) \rightarrow \mathcal{F}_{2 \ell}$ be the universal surface
- Define

$$
\kappa_{m, n}=\pi_{\star}\left(c_{1}(\mathcal{H})^{m} \cdot c_{2}\left(T_{\pi}\right)^{n}\right)
$$

- The κ-ring

$$
\kappa^{\star}\left(\mathcal{F}_{2 \ell}\right)=\mathbb{Q}\left[\kappa_{m, n}\right] / \text { relations }
$$

Question: How do we find relations between the $\kappa_{m, n}$'s?

Socle Conjectures

- there are even larger tautological rings

$$
\kappa^{\star}\left(\mathcal{F}_{2 \ell}\right) \subset R^{\star}\left(\mathcal{F}_{2 \ell}\right) \subset H^{\star}\left(\mathcal{F}_{2 \ell}\right)
$$

- Peterson and van der Geer showed that

$$
R^{18}\left(\mathcal{F}_{2 \ell}\right)=R^{19}\left(\mathcal{F}_{2 \ell}\right)=0, \quad R^{17}\left(\mathcal{F}_{2 \ell}\right) \neq 0
$$

- compact subvarieties have dimension ≤ 17

Socle Conjectures

- Question: Is the vanishing

$$
R^{18}\left(\mathcal{F}_{2 \ell}\right)=R^{19}\left(\mathcal{F}_{2 \ell}\right)=0
$$

true in Chow?

- Question: Is it true that

$$
R^{17}\left(\mathcal{F}_{2 \ell}\right)=\mathbb{Q} ?
$$

- Question: If so, evaluate top monomials in κ 's

Poincare duality?

Take $\ell=1$.

Kirwan-Lee computed

$$
\begin{aligned}
& P^{\text {even }}\left(\mathcal{F}_{2}\right)=1+2 t^{2}+3 t^{4}+5 t^{6}+6 t^{8}+8 t^{10}+10 t^{12}+12 t^{14} \\
& +13 t^{16}+14 t^{18} \\
& +12 t^{20}+10 t^{22}+8 t^{24}+6 t^{26}+5 t^{28}+3 t^{30}+2 t^{32}
\end{aligned}
$$

Poincare duality?

Take $\ell=1$.

Correction

$$
\begin{gathered}
P^{\text {even }}\left(\mathcal{F}_{2}\right)=1+2 t^{2}+3 t^{4}+5 t^{6}+6 t^{8}+8 t^{10}+10 t^{12}+12 t^{14} \\
+13 t^{16}+14 t^{18} \\
+12 t^{20}+10 t^{22}+8 t^{24}+6 t^{26}+5 t^{28}+3 t^{30}+2 t^{32}+t^{34}
\end{gathered}
$$

Questions: Structure of the tautological rings (for other classes of surfaces as well)?

- Are there methods of obtaining relations?
- Do we obtain all relations this way? Write the relations in closed form (hypergeometric series, modular forms, etc)?
- Carry out explicit calculations in the tautological ring

$$
\text { Math } 206-7 \text { =oture } 2
$$

$$
\text { January } 8,2020
$$

- Notes are available in Canvas -"Files"
- Plan for the first fin lectures:
(-1) Overview m last time
(0) Review \rightarrow today
(1) Examples of $k 3$ surfaces no next the

General faots that we wull use oflen / C

Gurves $J_{\text {Get }} x$ be a smooth profective curve

(a) Riomann-Rooh

$$
\begin{aligned}
y(x, z) & =h^{0}(x, z)-h^{\prime}(x, z) \\
& =1-g+d \lg z
\end{aligned}
$$

66) Serr duality $H^{i}(x, Z)^{2} \cong H^{n-i}\left(x, z^{2} \otimes K_{x}\right)$.

드 Kodaira variohing: oleg $\alpha>0$

$$
H^{\prime \prime}\left(x, k_{x} \otimes 2\right)=H^{\circ}\left(x, z^{2}\right)^{2}=0
$$

because z^{2} hao negative degree so no sootions

These theorems extend.
X smooth projective, dim $X=d$.
ra|' Hirzobruch - Riemann - Rock

$$
\begin{aligned}
x(x, 2) & =\sum_{k=0}^{d}(-,)^{k} h^{k}(x, z)= \\
& =\operatorname{dgg}\left(e^{c,(z) \cdot \operatorname{todd}(x)) \text {. requires more }}\right.
\end{aligned}
$$

[6' Sore duality

$$
H^{i}(x, z)^{2}=H^{d-i}\left(x, K_{x} \otimes z^{2}\right)
$$

[C] Roolaira vanishing

$$
H^{i}\left(x, k_{x} \otimes 2\right)=0 \text { if } z \text { ample, } i>0
$$

Surfaces \times smooth projective surface.

Intersection product C, Δ two divisors on X
C. $D=$ intersection product

- symmetric $C . \Delta=D . C$
- additive $\left(C_{1}+c_{2}\right) \cdot \Delta=C_{1} \cdot \Delta+C_{2} \cdot \Delta$
- C. $D=\#(c n \Delta)$ if C, D smooth intersecting
fransiereally

- passer through rational equivalence.

$$
c \equiv c^{\prime}, \Delta \equiv \Delta^{\prime} \Rightarrow c \cdot \Delta=c^{\prime} \cdot \Delta^{\prime} \text {. }
$$

Remark Many possible definitions.
Hartshorne: D integral.

$$
c \cdot \Delta=\operatorname{deg}[\underbrace{O_{x}(c) / \Delta}_{\text {line bole on } D . \rightarrow \text { divisor on } \Delta}]
$$

Why doer this make senor?

x
$C=$ ffective, Δ smooth
$O_{x}(c) \leadsto$ scotion s outhing outc
$O_{x}(c) / \Delta \sim$ section δ / Δ ceuthing out $C D D$.

$$
\text { dzgre }=\# \text { zeroes of sections. }=\# \text { cns }
$$

This worko if c, D are smooth tranoverse.

Pemark

$$
\begin{aligned}
& \text { In general, any } c \equiv c_{1}-c_{2}, c_{1}, c_{2} \text { omooth } \\
& H \text { ample, } c_{1} \in / n H / \text {, } n \gg 0 \text {. omooth by Bertini } \\
& C_{2} G \mid c+n+1, n \gg 0 \text {. smooth \& hanguerse to } c_{1} \\
& \text { ! } \\
& c \equiv c_{2}-c_{9}
\end{aligned}
$$

Hirzobruch - Ricmann - Rooh

$$
x(x, 2)=x\left(x, \sigma_{x}\right)+\frac{L\left(L-K_{x}\right)}{2}
$$

Additional statement (Noether's formula)

$$
\chi\left(x, O_{x}\right)=\frac{K_{x}^{2}+e_{\operatorname{top}}(x)}{12}
$$

$$
\begin{aligned}
& \text { Example } x=k 3 \Rightarrow K_{x} \cong O_{x} \\
& h^{2}\left(x, O_{x}\right)=h^{0}\left(x, K_{x}\right)=h^{0}\left(x, O_{x}\right)=1 \\
& \Rightarrow \quad \chi\left(x, \sigma_{x}\right)=\hbar^{\cdot}\left(x, \sigma_{x}\right)-\hbar^{\prime}\left(x, \sigma_{x}\right)+\hbar^{2}\left(x, O_{x}\right) . \\
& d=\text { finition } \\
& =1-0+1=2 \text {. }
\end{aligned}
$$

By Noether formula,

$$
\begin{aligned}
& 2=x\left(x, O_{x}\right)=\frac{K_{x}^{2}}{2} \frac{r_{\text {top }}(x)}{12} \Rightarrow e_{\text {top }}(x)=24 \\
& H^{\prime}(x, \sigma)=0 \Leftarrow H^{\prime}\left(x, O_{x}\right)=0, H^{3}(x, C)=0 . \\
& H^{0}(x, \sigma)=H^{4}(x, \sigma)=\sigma \\
& H^{2}(x, \sigma)=22 \text { diml. }
\end{aligned}
$$

Important fact about $=x$ act s eguences
$d z t E=\Lambda^{r} E, E \rightarrow x$ rater bundle, $r k E=r$.

$$
0 \longrightarrow E^{\prime} \longrightarrow E \longrightarrow E^{\prime \prime} \rightarrow 0
$$

(1) aet $\cong \cong \operatorname{det} E^{\prime} \oplus$ get $E^{\prime \prime}$. Math 2036 .
(2) $\quad X(X, E)=X\left(X, E^{\prime}\right)+X\left(X, E^{\prime \prime}\right) \quad$ Math 2036 .

Al function (H.V).
$c c x$ smooth curve, X smooth projective surface
Normal sequence

$$
\begin{aligned}
& 0 \longrightarrow T_{c} \longrightarrow T_{x} / c \longrightarrow N_{c / x} \cong \sigma_{x}(c) /_{c} \rightarrow 0 \\
& \Rightarrow \operatorname{by}(1): K_{c}=K_{x} /_{c} \otimes O_{x}(c) /_{c}=\left(K_{x}+c\right) / c
\end{aligned}
$$

Take degree

$$
2 g-2=\left(k_{x}+c\right) \cdot c
$$

Remark This holds for all $Y c X$ smooth, codim 1 .

$$
K_{r}=\left(K_{x}+[r]\right) /_{y}
$$

Proof of Hirzebruch - Ri=mann-Roch X omooth proj

$$
x(x, 2)=x\left(x, \sigma_{x}\right)+\frac{2 \cdot\left(2-k_{x}\right)}{2}
$$

By previous remark, $\mathscr{L}=O_{x}(c-\Delta), C, D$ smooth

Two exact seguences
(1) $0 \longrightarrow \mathcal{Z}=O_{x}(c-s) \longrightarrow O_{x}(c) \longrightarrow O_{x}(c) /_{\Delta} \rightarrow 0$.
(2) $0 \rightarrow O_{x} \quad \longrightarrow O_{x}(c) \longrightarrow O_{x}(0) / c \rightarrow 0$.

Take Euler oharaoterities

$$
\begin{aligned}
& x(x, z)=x\left(x, O_{x}(c)\right)-x\left(x, O_{x}(c) / 0\right) \text { by (1) } \\
& =x\left(O_{x}\right)+x\left(O_{x}(c) / c\right)-x\left(O_{x}(c) / \Delta\right) \text { by }(a) \\
& \begin{array}{l}
\text { Riemann - Roch for } \\
c, 0
\end{array} \\
& \text { adjunction }=x\left(O_{x}\right)+\left(-\frac{c^{2}+c \cdot k_{x}}{2}+c^{2}\right)- \\
& -\left(-\frac{0^{2}+0 \cdot K_{x}}{2}+D^{2}\right) \\
& =x\left(\theta_{x}\right)+\frac{L \cdot\left(L-K_{x}\right)}{2}
\end{aligned}
$$

For kB surfaces C smooth carve on $X=R 3$
(i) $c c x, 2 \operatorname{genus}(c)-2=c^{2}+c \cdot k_{x}=c^{2}$

$$
\Rightarrow \operatorname{genus}(c)=1+\frac{c^{2}}{2}
$$

[II $z \rightarrow x, \quad x(x, 2)=x\left(x, O_{x}\right)+\frac{L\left(L-K_{x}\right)}{2}=$

$$
=2+\frac{L^{2}}{2} .
$$

Important construction

$$
\begin{aligned}
& \text { If } z \text { is very ample, } i: x \stackrel{|z|}{\longrightarrow} H^{0}(x, z) \\
& \left.\begin{array}{rl}
h^{0}(x, z) & =\hbar^{0}(x, z)-\hbar^{0}(x, z) \\
0 & \hbar^{2}(x, z) . \\
& =x(x, z)
\end{array}\right)=2+\frac{L^{2}}{2} .
\end{aligned}
$$

Not that $\hbar^{\prime}(x, 2)=\hbar^{\prime}\left(x, K_{x} \otimes Z\right)=0$ by Kodaira \&

$$
h^{e}(x, z)=0
$$

Write $\alpha^{2}=2 g-2 \Rightarrow x(x, z)=g+1: \therefore x \longrightarrow \mathbb{R}^{g}$

Zot H general hyporplane in \mathbb{E}^{2} Zat $C=X n H$
!
Glaime c. has goonus g.

$$
O_{x}(c) \cong \alpha
$$

$$
\operatorname{gonug}(c)=1+\frac{c^{2}}{2}=1+\frac{2^{2}}{2}=1+(g-1)=g
$$

$R=$ mark \quad Robinating to $c: \quad i / c: C \longrightarrow \mathbb{P}^{9} n H \cong \mathbb{P}^{9-9}$.

$$
2 / c O_{\mathbb{E}}(1) \cong z / c=O_{x}(c) / c \cong K_{c} \text { by adjunation. }
$$

$\Rightarrow i$ can be identifed with the canonical map. [H.N.].

II Examples of $k 3$ surfaces
A. Curves (Math 2036)

$$
\begin{aligned}
& g=0: c \cong \mathbb{R}^{\prime} \\
& g=1: \quad c=\text { llipfic } \\
& g=2: c \underset{2: 1}{\longrightarrow \mathbb{P}^{\prime}} \quad \text { branched at } 6 \text { points. } \\
& g=3: \quad \text { - hypor=lliptio } \subset \underset{2: 9}{\longrightarrow} \mathbb{P}^{\prime}
\end{aligned}
$$

- quartic in sp^{2} ($g=3$ by adjunction)

$$
\begin{aligned}
g=4: & - \text { hypor=lliptio } \\
& -c \cong Q \cap \subset \subset \mathbb{Z}^{3}, Q=\text { quadric, } c=\text { cubic. }
\end{aligned}
$$

$$
\begin{aligned}
& g=5: \quad-\text { hyper=lliptic } \quad \underbrace{}_{2-1} \boldsymbol{m}^{\prime} \\
& \text { - trigonal } c \underset{3-1}{\longrightarrow} \\
& \text { - } C \cong Q, \cap Q_{2} \cap Q_{3} \longleftrightarrow ⿻^{4}, \quad Q_{i} \text {-quadrics. }
\end{aligned}
$$

Question Can this go on?

How about $g=6,7,8,9, \ldots$?
B. Analogous question.

Constiuat (or classify) low genus Ks.

If $(x, 2)$ is a pair. $z(v e r y)$ ample, $z^{2}=2 g-2$ we say $g=$ genus.

Features: (a) we book analogies with curves we'd need analogues of
$g=1$ curves \longrightarrow elliptic fibrations w/ sections
hyperelliptic curves \leadsto hyperelliptic KSS
general case \longrightarrow Mukai examples for $g \leq 9$.
(b) Outcome: we wall learn about the moduli of k3s
in low genera

Bonus : additional facts about low genus curves

$$
23-f o l d s
$$

$$
\begin{array}{r}
\text { Methods } \quad I \quad g=2: \text { double covers; } x \rightarrow p^{2} \text { branched } \\
\text { alongextics }
\end{array}
$$

LG $3 \leq g \leq 9$, various complete intersections
(ilL Summer surfaces m abslian surfaces.

$$
\begin{aligned}
& \text { Math } 206-7=0 \text { her } 3 \\
& \text { January } 13,2020
\end{aligned}
$$

0. Jast hme $(x, z), z^{2}=2 g-2$.

If $\bar{\alpha}$ very ample $\Rightarrow: x \longrightarrow \mathbb{P}^{g}, g+1=h^{0}(x, z)$

Smooth hyporplane section $C=X n H$ has gonus g

Today \&noxt time Gonstuat example. in low gences

$$
\begin{aligned}
& \text { Mothod 1: Gomplot Interoections } \\
& M=t h o d s 2 \& 3: \text {-noxt tume }
\end{aligned}
$$

I. $]^{3 \leq g \leq 0}$

Genus $g=3 \quad x \longrightarrow \pi^{3}$ smooth quartic.

$$
\mathcal{Z}=O_{x}(1) \Rightarrow z^{2}=4=2 g-2 \Rightarrow g=3 \text {. We obeck }
$$

(a) $K_{x} \cong \sigma_{x}$
(b) $H^{\prime}\left(x, G_{x}\right)=0$
(a) We use the normal oeguonce

$$
0 \rightarrow T_{x} \longrightarrow T_{\pi^{3}} / x \rightarrow N_{x / \pi^{3}} \cong O_{x}(4) \rightarrow 0 .
$$

Take determinants \& dualige

$$
K_{n^{3}} /_{x} \cong K_{x} \otimes O_{x}(-4) \cong O_{x} \text { since } K_{p s} \cong O_{p}(-4) .
$$

Recall the calculation of Kips. The Euler oequerce

$$
0 \longrightarrow G \longrightarrow G_{\Gamma^{3}}(1) \otimes \Phi^{4} \longrightarrow T_{\pi^{3}} \rightarrow 0
$$

Taking determinants 2 dualizing: $K_{r^{3}} \cong O_{p^{s}}(-4)$.
(b) $f^{\prime}\left(x, G_{x}\right)=0$:

$$
\begin{array}{rl}
0 & 0 G_{p^{3}}(-4) \rightarrow G_{r^{3}} \rightarrow O_{x} \rightarrow 0 \\
\Rightarrow & \left.H_{0}^{H^{\prime}\left(\mathbb{P}_{3}^{3}, O_{p^{3}}\right)} \rightarrow H^{\prime}\left(x, G_{x}\right) \rightarrow H^{H^{2}\left(\mathbb{R}^{3}, G_{\mathbb{P}^{3}}(-x)\right.}\right) \Rightarrow H_{0}^{\prime}\left(x, G_{x}\right)=0
\end{array}
$$

Fact Over $\mathbb{P}^{2}, \operatorname{lon}_{n}=$ bundles have no intermedialo
cohomology

Count "moduli"

$$
\operatorname{dim} \mathbb{P H} \frac{\left(\mathbb{P}^{3}, O(4)\right)}{\binom{4+3}{3}-1}-\operatorname{dimPGL}_{4}=19
$$

The moduli space $F_{3}^{0}(x, z), z^{2}=4, z$ ample
$-\quad$ (not y et conotiuofd in class)

$$
\begin{gathered}
g=3 \text { curries } \\
x \longleftrightarrow \mathbb{p}^{2} \mathcal{Z}^{u a r t i c s} \\
\times \xrightarrow[2: 1]{\longrightarrow} \mathbb{p}^{\prime} \text { hyporalliptic }
\end{gathered}
$$

$F_{3} \quad b i-a t i o n a l$ to $\mathbb{P} H^{0}\left(\mathbb{P}^{3}, \theta(4)\right) / P G L_{4} \leadsto$ unirational

$$
\mathbb{P} \rightarrow \mathscr{F}_{3} \cdot \text { dominant }
$$

Question Describe the Beth numbers of \mathcal{F}_{3}.

Complete intersections $g=4, g=5$.

SEA up

$$
x \longleftrightarrow \pi^{n+2}, \quad x=y, n \ldots n y_{r}
$$

Y_{2}. degree d_{2} hypersurface, $\mathcal{Z}=\mathcal{O}_{x}(1)$.

Canonical bundle $K_{x} \cong \mathcal{O}_{x}$. Use the normal sequence

$$
0 \longrightarrow T_{x} \longrightarrow T_{p r+2} / x \rightarrow \bigoplus_{i=1}^{r} O_{x}\left(d_{i}\right) \longrightarrow 0
$$

Taking dobrminants \& duabiging

$$
\begin{aligned}
k_{x} & \cong O_{x}\left(\sum_{i=1}^{r} d_{i}-r-3\right) \cong O_{x} \\
\Rightarrow & \sum_{i=1}^{n} d_{i}=r+3 \quad d_{i}>1
\end{aligned}
$$

New examples
In $r=2, \quad\left(d_{1}, d_{2}\right)=(2,3)$

$$
x \hookrightarrow \mathbb{P}^{4}, \quad x=a n c
$$

Q quadric, c cubic, $\operatorname{deg} x=6=2 g-2 \Rightarrow g=4$
(4)

$$
\begin{aligned}
r=3 & \left(d_{1}, d_{2}, d_{3}\right)=(2,2,2) \\
& x \longleftrightarrow \mathbb{P}^{\sigma}, x=Q, \cap Q_{2} \cap Q_{3} \\
d_{\operatorname{tg}} x & =8=2 g-2 \Rightarrow g=5
\end{aligned}
$$

Count "moduli" $(g=4)$
choice of $[a]$ [a] independent of $[a]$
δ

$$
\begin{aligned}
& \operatorname{dim} \mathbb{P} \underbrace{H^{\circ}\left(\sigma_{p^{4}}(2)\right)}+\operatorname{dim} \mathbb{R}^{\circ}\left(\sigma_{\mathbb{p}^{4}}(3)\right)^{*}-\underbrace{\operatorname{dim} \operatorname{Pc} L_{\sigma}} \\
& =\left(\binom{4+2}{2}-1\right)+\left(\binom{4+3}{3}-1-5\right)-24 \\
& =19
\end{aligned}
$$

$$
H^{\prime}\left(x, O_{x}\right)=0
$$

Peal: over $\mathbb{P}^{\frac{K}{2}}$, $h_{n}=$ bundles have no intermediate

$$
\text { cohomology (H. III. } 5) \text {. }
$$

Remark \times smooth projective, $\tilde{f} \rightarrow \times$ locally froe is void to bo arithmetically Cohen - Macaulay $(A C M)$.

$$
\begin{aligned}
& H^{k}(x, \mathcal{F}(p))=0 \quad * 1 \leq k \leq d i m x-1 \quad * \\
& O_{p^{n}}=A c M \text { over } \mathbb{P}^{n} \& G_{p^{n}}(l)=A \mathrm{CM} \text { over } \mathbb{P}^{n} .
\end{aligned}
$$

Remark f^{*} (Horrooks) over \mathbb{P}^{m}, the only indecomposable
vector bundles that are ACM are $G_{\text {pm }}(l)$.

Lemma X complot intorscation $\Rightarrow O_{x}$ is Acc.

Proof We argue by induction on dim x. $x=p^{r}$ done!
$Z_{E}+\quad Y=x n H, H$ hypersurface of degree e
$0 \rightarrow \mathcal{O}_{x}(-c) \rightarrow \mathcal{O}_{x} \longrightarrow O_{r} \rightarrow 0$

$$
0 \rightarrow O_{x}(p-0) \rightarrow \sigma_{x}(p) \rightarrow O_{r}(p) \rightarrow 0
$$

Take cohomology

$$
\begin{aligned}
& H_{0}^{i\left(\theta_{x}(p)\right)} \rightarrow H_{0}^{i\left(\theta_{r}(\beta)\right)} \rightarrow H^{i+\rho} \underbrace{\left(\theta_{x}(\mu-a)\right)}_{0} \\
& \therefore 1 \leq i \leq d i m Y-1
\end{aligned}
$$

From the Lemma we see $H^{\prime}\left(x, G_{x}\right)=0$. in the above examples.
II. $6 \leq g \leq 10 \& g=12$

Idea Instead of projective space, use
z smooth fans erg. R_{z}^{-1} ample.
Def Z is pome if $P_{i c}(z)=\mathbb{Z}$.

Index Write $K_{Z}^{-9}=M$ i $i \in \mathbb{Z}>0$, M ample a primitive.
$i=$ ind x of z.
Goindex $\quad c=\operatorname{dim} z+1 \ldots$ i

$$
\begin{aligned}
& \text { Examples } \cap Z=\mathbb{P}^{r+2}, K_{\neq p r+2}=O(-r-3) \\
& \Rightarrow i=r+3 \Rightarrow c=(r+2)+i-i=0 .
\end{aligned}
$$

[it $Z=Q \longrightarrow \mathbb{P}^{n+3}$ smooth 2 uadic

$$
\begin{gathered}
\Rightarrow K_{Q}=O(-r-4+2)=G(-r-2) \Rightarrow i=r+2 \\
C=(r+2)+1-(r+2)=1 .
\end{gathered}
$$

(u) $Z=\sigma\left(2, ब^{n}\right) \leadsto K_{z}$.

$$
\operatorname{dim} z=2(n-2)
$$

Over $z=6\left(2, \mathbb{C}^{n}\right): 0 \rightarrow E \rightarrow \sigma^{n} \otimes 0 \rightarrow F \rightarrow 0$ (1)
E, F tautological subbundle \& quotient.

$$
\text { Real } \quad T_{z}=\operatorname{Hom}(E, F)=E^{2} \otimes F \text {. }
$$

Tensor by E^{2} :

$$
\begin{aligned}
& 0 \rightarrow E \otimes E^{2} \rightarrow ब^{n} \otimes E^{2} \rightarrow \underbrace{F \theta E^{2}}_{T_{Z}} \rightarrow 0 \\
& \text { ferminants }
\end{aligned}
$$

Take determinants

$$
\operatorname{det}\left(E \otimes E^{2}\right) \otimes \operatorname{det} T_{z}=\left(\operatorname{dot} E^{2}\right)^{\otimes 2}
$$

tRivial

$$
\Rightarrow \quad k_{z} \cong(\operatorname{det} E)^{\otimes n} \quad \Rightarrow \quad i=n
$$

$$
c=\operatorname{dim} z+1-\therefore=2(n-2)+1-n=
$$

$$
=n-3
$$

For instance $G(2,5)$ has $c=2, G(2,6)$ has $c=3$.

Exercise C index of $S G(k, n), O G(k, n)^{*}$.

Constuotron Z Fans as above, $\operatorname{dim} Z=r+2, K_{Z}^{-9}=M^{0 \cdot}$

$$
x=z n H, n \ldots H_{r} \quad M \text { very ample }
$$

$$
H_{j} \in / M^{\circ d_{j} /} \text {. We hope to get a kos. }
$$

$$
\begin{aligned}
& \text { Canonical bundle } K_{x} \cong O_{x} . \\
& 0 \rightarrow T_{x} \rightarrow T_{z} /_{x} \rightarrow N_{x / 2}=\bigoplus_{J=1} M^{0 d_{j}} \rightarrow 0
\end{aligned}
$$

Take determinants a dualize

$$
\Rightarrow K_{x} \cong m^{\otimes}\left(-\sum_{j=1}^{r} d_{j}\right) \cong O_{x}
$$

We wiob to have $\sum_{j=1}^{r} d_{j}=i<$ index of z

$$
\begin{aligned}
\Rightarrow \quad \operatorname{coindex}(z) & =(r+2)+1-\dot{0} \\
& =r+3-\sum_{j=1}^{r} d j \leq 3 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { summa } c \geq 0 \\
& \text { Proof } e \geq 0 \Leftrightarrow \quad i \leq \text { slim } z+1 \text {. } \\
& \text { Recall } K_{Z}^{-9}=M^{\circ} \text {. Consider } \\
& f(t)=X\left(Z, M^{\Delta t}\right)=\text { polynomial int of degrees dem } Z \text {. }
\end{aligned}
$$

by Firzebruch - Riemann - Rock.

Show: f has roots $-1,-2, \cdots, 1-0 \Rightarrow \operatorname{dim} \neq 1 \leq$

This completes the proof. We show

$$
\begin{aligned}
& \cdot h^{k}\left(z, M^{\otimes t}\right)=0 * k \notin t \in\{-3, \ldots, 1-i\} \\
& \text { If } k=0, h^{0}\left(z, M^{\otimes t}\right)=0 \text { since } t<0 \text {, M ample } \\
& k>0, H^{k}\left(z, m^{\otimes t}\right)=H^{k}\left(z, K_{z} \otimes M^{(i+t)}\right)=0
\end{aligned}
$$

by Kodara vanishing using $i+t>0$.

Discussion
Kobayashi- Ochiai (1973)

II $c=0 \Rightarrow z=p^{r}+2$

This case yielded the examples $3 \leq g \leq 5$.

Since $\sum_{j=1}^{r} d_{j}=r+2 \Rightarrow\left(d_{1} \ldots d_{r}\right)=(1,1, \ldots, 1,3) \&(1,1, \ldots 2,2)$

Again this yields the old examples.

L216 $c=2 . \operatorname{Since} \sum_{J=1}^{r} d J=r+1 \Rightarrow(1,1, \ldots, 1,2)$

In this cave $\operatorname{dim} Z=r+2, K_{Z}^{-1}=M^{\theta(r+1)}$

These are called del Pez70 manifolds.

Indeed, these generalize del Pezzo surfaces.

$$
\begin{aligned}
\text { If } z^{2}=d e l P_{\text {eqzo }} \text { surface }= & B l_{k} \mathbb{P}^{2}, d i m z=2, r=0 \\
& \text { index }=1: K_{Z}=-3 H-\sum_{i} E_{i} .
\end{aligned}
$$

We saw above that $G\left(2, \mathbb{C}^{5}\right)$ is another example.

$$
\text { II } c=3 \quad \Rightarrow \sum_{j=1}^{r} d_{j}=r \Rightarrow(1,1, \ldots, 1)
$$

In this case, $\operatorname{dim} Z=r+2, K_{Z}^{-1}=M^{\otimes r}$

There are called Mukai manifolds.

We saw above that $G\left(2, \sigma^{6}\right)$ is an example.
$152=0$? Yes. We only discuss $x=3 ; c=2$ is similar.
Lemma II Z Faro of coindex $c=3 \Rightarrow x=z n H, H \in|m|$.
then x Faro of coindex $c=3$ if $\operatorname{dim} z \geq 4$
[i") If $d, m z=3 \Rightarrow H^{\prime}\left(x, O_{x}\right)=0$.

Proof will discuss briefly next the ne.

$$
\frac{\text { Math } 206-2 \text { eoture } 4}{\text { January } 15,2020}
$$

plan

- Review from last time
- der Puzo manifolds $x=2$
- Mukai manifolds $c=3$
- Conclusion

Last time - General constiuotion
Z Fane manifold, $K_{z}^{-!}=M^{O^{\prime}}, Z^{\circ}=$ index

$$
\begin{aligned}
& x=\operatorname{dim} z+1-i^{\circ} \operatorname{coindex}, \operatorname{dim} z=r+2 \\
& x=Z \cap H, \cap \ldots \cap H_{r}, H_{0} \in / M^{d} \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { To get } K_{x} \cong G_{x} \text { we only focus on } \\
& c=2,\left(d_{1}, \ldots d_{r}\right)=(1,1, \ldots, 2)
\end{aligned}
$$

$$
c=3,\left(d_{1}, \ldots, d_{r}\right)=(1,1, \ldots, 1)
$$

Questions

IB How do we know we don't get $x=$ aboliar surface?

$$
w=\text { show } H^{\prime}\left(x, O_{x}\right)=0 \text {. }
$$

(2) What is the genus $(x, M / x)$?

We only discuss the case $c=3$. The care $c=2$ is similar.

Lemma IL Z Faro of coindex $c=3 \Rightarrow x=Z \cap H, H E / M 1$.
then x Faro of coindex $c=3$ if dim $z \geq 4$
(ic) If $\operatorname{dim} z=3 \Rightarrow H^{\prime}\left(x, O_{x}\right)=0$.

Proof il $w_{r i} f_{e} d=\operatorname{dim} z, d i m x=d-1, d \geq 4$

The condition coindex $(z)=3$ means index $(2)=d-2 \geq 2$.
$U_{s}=$ adjunction

$$
K_{x}=\left(K_{z}+M\right) /_{x}=M^{\otimes\left(1-i \operatorname{sde}_{z}\right)} /_{x}=M^{-(d-3)} / x
$$

Since $d \geq 4 \Rightarrow x$ is Fano. $W_{\text {I }} \Rightarrow n=0 d$ to ohow index $(x)=d-3$.

This amounts to showing M / X is primitive. When M is very ample, $d . \geq 4$, the Grothendireck- \quad-fochetz the shows

Pic (z) $\longrightarrow P_{i}{ }^{\circ} C(x)$ is an isomorphism.
(very ampleness happens in all =xamples bolowl.

$$
\text { index } x(x)=d-3 \Rightarrow \operatorname{con} d=x(x)=3
$$

Remark

For a different argument, wee x, z are both Fano. In part LIT below we show $H^{\prime}\left(2, O_{2}\right)=0, H^{\prime}\left(x, O_{x}\right)=0$ for all

Fanos. This implies that the rows in the diagram below are infective

$$
\begin{aligned}
& P_{i c}(z) \xrightarrow{\text { injectire }} H^{2}(2, Q) \quad b / c \cdot H^{\prime}\left(2, O_{\infty}\right)=0 \\
& / \\
& P_{i c}(x) \xrightarrow{\text { injectirc }} H^{2}(x, Q) \quad b / c \quad H^{\prime}\left(x, O_{x}\right)=0
\end{aligned}
$$

\& by the weak Z fofochoty tho $H^{2}(z, Q) \xrightarrow{\sim} H^{2}(x, Q)$.

Using the diagram: Mpromitive $\rightarrow M / x$ primitive.
[1] $0 \rightarrow O_{z^{2}}(-H) \rightarrow O_{z^{2}} \rightarrow O_{x} \rightarrow 0$

Take cohomology

$$
H^{\prime}\left(z, O_{2}\right) \rightarrow H^{\prime}\left(x, O_{x}\right) \longrightarrow H^{2}\left(2, m^{-1}\right)
$$

Since $\operatorname{dim} z=3 \& x=3 \Rightarrow \operatorname{ind} x(z)=1 \Rightarrow K_{z}=M^{-1}$

Thus $H^{\prime}\left(z, O_{z}\right)=H^{\prime}\left(z, K_{z}+m\right)=0$ by Kodara
$H^{2}\left(2, m^{-\prime}\right)=H^{\prime}\left(z, O_{z}\right)^{2}=0$ by sere duality.

$$
\Longrightarrow H^{\prime}\left(x, O_{x}\right)=0 .
$$

Genus Since $(x, M / x)$ is a ks surface we can auk for the
genus. $2 g-2=(1 s / x)^{2}$. Since $x=z \cap H_{0} n \ldots \cap H_{r}$

$$
(\text { coindex } x=3) \Rightarrow 2 g-2=(m / x)^{2}=m^{r+2} .
$$

Remark
$17 z^{2}$ kano 3 -fold of coindex $3 \Rightarrow$ index $=$ 1

$$
\Rightarrow m=k_{z}^{-1} \Rightarrow 2 g-2=\left(-k_{z}\right)^{3}
$$

D.fire Genus $(z)=\frac{1}{2}\left(-k_{z}\right)^{3}+1$.

Coindex $c=2$ (lskouskikh. Fugita, '7s'so)

These are called dol Pezzo manifolds.

Classification:
(a) 74 mon prome examples in dim ≥ 3

$$
\mathbb{p}^{\prime} \times \mathbb{p}^{\prime} \times \mathbb{p}^{\prime}, \mathbb{P}^{2} \times \mathbb{P}^{2}, B l_{p} \mathbb{P}^{3}, \mathbb{P} T_{p^{2}}
$$

(6) 5 pnme examples in dim ≥ 3

16 3-fold: dogree 6 hypersurface in
waigbted progeative space wp $(1,1,1,2,3)$
(4) 2-shookd covers of \mathbb{P}^{r+2} branched over
quartics
[四 smooth cubics in \mathbb{p}^{r+3}

IV $(2,2)$ complet intersections in P $^{r+4}$

IV $G\left(2, \mathbb{C}^{v}\right)$ \& hinear geetions

Remark
（1）Examples gild k3s with Picard rank >1 ．The oe are not generic．So we will mot discuss them further．
（2）Examples 四－IN yield $g \leq 5$ ．

Thus we only consider the last example．$G\left(2, \sigma^{\sigma}\right)$ ．

K3's of genes $g=6$ Z et $z=6\left(2, \sigma^{5}\right)$.

We saw last time coindrx $G\left(2, \Phi^{n}\right)=n-3$.

Recall the plucker embedding

$$
\begin{aligned}
& G\left(k, \mathbb{C}^{n}\right) \longrightarrow \mathbb{P} \Lambda^{k} \mathbb{C}^{n} \\
& {\left[W \subseteq \mathbb{C}^{n}\right] \rightarrow\left[\Lambda^{k} w \subseteq x^{k} \mathbb{C}^{n}\right]}
\end{aligned}
$$

We have $G_{6}(1)=2^{*} G_{p}(1)=\operatorname{det} y^{2}$ where

$$
0 \longrightarrow J \longrightarrow ब^{n} \otimes \sigma_{\sigma} \longrightarrow Q \longrightarrow 0 \text { is the }
$$

tautological sequence.

In our case

$$
G\left(2, \mathbb{C}^{5}\right) \longrightarrow \mathbb{D} \wedge^{2} \mathbb{C}^{5} \cong \mathbb{P}^{9}
$$

Since dim $z=2(5-2)=6$, we need

$$
x=Z \cap H_{1} n H_{2} \cap H_{3} \cap Q \text { where }
$$

Q quadric in \mathbb{p}^{9} \& H_{i} hyperplanes $\Rightarrow x=k 3$.

This is conoioknt with $\left(0, \ldots, d_{r}\right)=(1,1, \ldots, 1,2)$.

Note $Z \longrightarrow \mathbb{P}^{9} \Rightarrow x=2 n Q n H_{1} n H_{2} n H_{3} \longrightarrow \mathbb{P}^{6}$

We claim $\left(x, O_{x}(1)\right)$ has genus 6

Fact $G\left(k, \Phi^{n}\right) \stackrel{i}{\longrightarrow} \mathbb{P}\left(\Lambda^{k} \mathbb{\Phi}^{n}\right)$ has degree

$$
\begin{aligned}
\text { (*) } \quad(k(n-k))! & \overline{11} \quad(y-i)^{-1} . \\
& 1 \leq k \leq j \leq n
\end{aligned}
$$

When $k=2$, the above opecializes to Catalan number

$$
\frac{1}{n-1}\binom{2 n-4}{n-2}
$$

In our care $\operatorname{deg}\left(Z \longrightarrow \mathbb{P}^{9}\right)=5 \Rightarrow \operatorname{deg}\left(x \longrightarrow \mathbb{Z}^{5}\right)=10$

By $d=$ finiton d eg $(x)=2 g-2 \Rightarrow 2 g-2=10 \Rightarrow g=6$.

The fact above is classical．but see Bored \＆Hirzebruah
（ 958 ）for the case of general 6／P．

On＝possible argument is to first compute the Hilbert series of the plüaker embedding：

$$
\begin{aligned}
\chi\left(G\left(k, \sigma^{n}\right), O_{G}(i)^{\otimes N}\right)= & \prod \frac{N+\partial-i}{\partial} \\
& n \leq i \leq k \\
& k<j \leq n
\end{aligned}
$$

This follows by interpreting $H^{\circ}\left(G\left(k, \sigma^{n}\right), O_{G}(1)^{\otimes N}\right.$ ）as a GL n－representation \＆using Weal dimension formula．

Expanding into powers of N ：

$$
\begin{aligned}
& \chi\left(\sigma\left(k, \sigma^{n}\right), \sigma_{G}(1)^{\oplus N}\right) \sim \frac{N^{\operatorname{dim} \sigma}}{(\operatorname{dim} \sigma)!} \cdot \operatorname{degrec}+\ldots . \\
& \prod_{i \leq i \leq k} \frac{N+\jmath-i}{J-i} \sim N^{\text {ding }} \overline{T l}^{\operatorname{li}}(J-i)^{-9}+\ldots \\
& k<j \leq n \\
& 0 \leq i \leq k \\
& \text { そくj! }
\end{aligned}
$$

we got the claim．

Coindex 3 Mukai (88) \& Masoimiliano Mola (99)

Z Mukai manifold

$$
K_{z}^{-1}=M^{r}, \quad \operatorname{dim} z^{2}=r+2, \quad d_{1}=\cdots=d_{r}=1
$$

Remark
\exists non-prome examples

$$
\mathbb{P}^{3} \times \mathbb{P}^{3}, \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}, \mathbb{P}^{\prime} \times \mathbb{P}^{3}, \mathbb{P}^{2} \times Q^{3} \ldots
$$

Prme examples
$\square \quad Z=G\left(2, ब^{6}\right) \Rightarrow g=8$
(II) $z=0,\left(5, a^{10}\right) \Rightarrow g=7$
(4ic) $Z=\alpha G\left(3, \sigma^{6}\right) \Rightarrow g=9$
IV $Z=G_{2} / I \quad \Rightarrow g=10$
IV) $z=S \subset\left(3, \sigma^{7}, \omega_{1}, \omega_{2}, \omega_{3}\right) \Rightarrow g=12$.

These \& linear seotions are all prme examptes if $g \geq z$.

Remark (Bore \& Hirgebruch)

All G/p's are Fano manifolds.

In the oases considered here this can be choked by hand.

Remark W prime Faro 3-fold, $c=3, \operatorname{gencos}(w)=\left(-k_{w}\right)^{3} / 2+1$

Thus $g \leq 10$ \& $g=12$. as the above list. shows.

Remark We obtain examples of curves $7 \leq g \leq 10, g=12$ as well
by intersecting with sufficiently many hyperplanes.

Exerciar $\quad Z=G\left(2, \sigma^{6}\right) \longrightarrow \mathbb{D} \lambda^{2} \sigma^{6} \cong \mathbb{T}^{14} \quad d=g r=14$
(by previous argument). $\quad \operatorname{dim} z=2.4=8$
$x=2 n H, n \ldots H_{6} \longrightarrow \mathbb{P}^{8}$ is a $k 3$ surface

$$
2 g-2=\operatorname{degre}(x)=\operatorname{degree}(z)=14 \Rightarrow g=8
$$

Discussion of the remaining examples
(1) $Z=\angle G(3,6)$

Description of $L G(n, 2 n)$ Take $V \cong \sigma^{2 n}$

Let $\omega=\varepsilon_{1}^{2} \wedge \varepsilon_{2}^{2}+\ldots+e_{2 n-1}^{2} \lambda e_{2 n}^{2}$ symplectic form.
Lot

$$
L G(n, 2 n)=\left\{w \subseteq v, \operatorname{dim} w=n,\left.w\right|_{w \times w} \equiv 0\right\}
$$

Note $L G(n, 2 n) \longrightarrow G(n, 2 n)$.

Over $G(n, 2 n)$ there is the universal rabbunclle

$$
J . \longleftrightarrow v \otimes O_{G} .
$$

The form
$\omega: \Lambda^{2} v \longrightarrow \sigma$ induces by restriction

$$
\begin{aligned}
& \tilde{\omega}: \Lambda^{2} \mathcal{J} \rightarrow \mathcal{O}_{G} . \& \angle G=2 \operatorname{ero}(\tilde{\omega}) . \\
& \begin{aligned}
\operatorname{dim} \angle G(n, 2 n) & =\operatorname{dim} G(n, 2 n)-\operatorname{rank} \Lambda^{2} J \\
& =n^{2}-\binom{n}{2}=\frac{n(n+1)}{2}
\end{aligned}
\end{aligned}
$$

Canonical bundle \& coindox

$$
\square \longrightarrow T_{L 6} \rightarrow T_{\sigma} / L_{G} \rightarrow n^{2} J^{2} \longrightarrow 0
$$

Taking determinants we ore:

$$
K_{G} /_{L G}=K_{L G} \otimes \operatorname{dot} \lambda^{2} y^{\nu}
$$

W_{e} showed last time $K_{G} \cong O_{G}(-2 n)$.
W_{E} have $\operatorname{det} \Lambda^{2} J^{v}=(\operatorname{det} \dot{y})^{n-1}=O_{G}(n-1)$

$$
\Rightarrow K_{L G} \cong \mathcal{O}_{L G}(-n-1) \Rightarrow \operatorname{index}(2 \sigma)=n+1 \text {. }
$$

$$
\Rightarrow \text { coindex }(L G)=1+\frac{n(n+1)}{2}-(n \rightarrow 1)=3 \Leftrightarrow n=3 \text {. }
$$

Plucker embedding

Note $\operatorname{dim} L G(3,6)=6 ., L G(3,6) \hookrightarrow G(3,6) \hookrightarrow \mathbb{P} \wedge^{3} \sigma^{6}$
$5 / 1$

$$
\mathbb{P}^{3}
$$

$$
\begin{aligned}
\text { Let } \omega^{\#}: & \Lambda^{3} v
\end{aligned} \quad \begin{aligned}
& v \cong \mathbb{c}^{6} \\
a \wedge b \wedge c & \longrightarrow \omega(a, b) c+\omega(b, c) a+\omega(c, a) b .
\end{aligned}
$$

$$
\text { Note } \omega^{\#} \text { surgective } \Rightarrow \text { dim Kor } \omega^{*}=\binom{6}{3}-6=14 \text {. }
$$

Note $\omega / w \times w \equiv 0 \Longleftrightarrow w^{\#} / n^{3} w=0$. Thus the P/ücker
point $\Lambda^{3} w \hookrightarrow \Lambda^{3} v$ lies in Kor $\omega^{\# \#}$ showing that

$$
\operatorname{LG}(3,6) \longleftrightarrow \mathbb{P}^{\prime 3} .
$$

The $k 3$ surface of genus 9

$$
\Rightarrow \quad x=L 6(3,6) \cap H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \hookrightarrow \mathbb{R}^{9} \text { is }
$$

a 23 surface. The fact below shows

$$
\operatorname{deg} x=\operatorname{drg} \operatorname{Le}(3,6)=16=2 g-2 \Rightarrow g=9 .
$$

Fact The degree of plucker embedding of $L G(n, 2 n)$

$$
2^{d} d!\prod_{11 \leq i \leq j \leq n}(2 n \rightarrow 2-i-j)^{-1}, d=\operatorname{dim} \angle \sigma(n, 2 n)
$$

(Morel \& Fliry=bruoh 1958)
(2) $g=12, z=$ "trisympleatic Grasomannian."

Definition $Z z_{1}+\omega_{1}, \omega_{2}, \omega_{3}$ be general oympleatic forms

$$
2=S G_{3}\left(3, \sigma^{7}\right)=\left\{w \subseteq \mathbb{\sigma}^{7}, \operatorname{dim} w=3, \quad \omega_{i} /_{w \times w} \equiv 0\right\}
$$

Dimension

We have $Z=Z \operatorname{zero}\left(\tilde{\omega}_{1}\right) \cap$ Zero $\left(\tilde{\omega}_{2}\right) \cap$ Zero $\left(\tilde{\omega_{3}}\right)$
where $\tilde{\omega_{2}}$. are sections of $\Lambda^{2} \mathscr{J}^{2}, \quad$, $\rightarrow 6\left(3, a^{7}\right)$.

$$
\begin{aligned}
\Rightarrow \operatorname{dim} z^{z} & =\operatorname{dim} G\left(3, \sigma^{7}\right)-3 \text { rank } \wedge^{2} J^{\prime} \\
& =3(7-3)-3 \cdot\binom{3}{2}=3
\end{aligned}
$$

Coindex

$$
W=\text { have } K_{G(3,7)} \cong O_{G}(-7) \text { \& } \operatorname{det} \Lambda^{2} J^{V} \cong\left(\operatorname{det} J^{2}\right) \cong O_{G}(2)
$$

$$
\Rightarrow K_{z}=\mathcal{O}_{z}(-1) \Rightarrow \text { index } z=1 \Rightarrow \operatorname{coindex}(z)=3 .
$$

Plucker embedding.
$W=$ have $G\left(3, \mathbb{C}^{7}\right) \longrightarrow \mathbb{I}\left(n^{3} \mathbb{C}^{7}\right)$. but the Plïcker
points of W 's in $S G_{3}\left(3, \sigma^{7}\right)$ lie in

$$
\text { 卫 (Kor } \left.\omega_{1}^{\#} \cap \operatorname{Ker} \omega_{2}^{\#} \cap K_{\operatorname{T}} \omega_{3}^{\#}\right) \cong \mathbb{P}^{13}
$$

The 23 surface of gens 12

Then $x=\neq n+1 \quad \mathbb{P}^{12}$ is a <3 surface of genus 12 .
(3) $z=G_{2}$-variety, $g=10$

The group G G

A"logal" definition of a_{2} is as follows. Lat $v \cong \mathbb{c}^{7}$
Prick a basis r,,..., r of v^{\prime} and write

$$
e_{, j z e}=e_{2}^{N} \wedge e_{j}^{v} \wedge \varepsilon_{k}^{v} \wedge e_{t}^{v}=4-\text { form }
$$

$z=t$

$$
\psi=-e_{4067}+\tau_{2367}-e_{2345}+\tau_{1357}+\tau_{1346}+\tau_{1256}-e_{1247}
$$

The group σ_{2} is the stabilizer of ψ in $G L(v)$.
It can be checked $\operatorname{dim} \epsilon_{2}=14$.

Cylindoro of Calabi-Yau geometries
Over R_{1}, the group G_{2} can be understood as follows
2.t

$$
\begin{aligned}
& \mathbb{R}^{7}=\mathbb{R} \times \sigma^{3}=\text { cylinder over } \sigma^{3} \\
& \text { Note } \sigma^{3} \text { is Calabi- Tau with }
\end{aligned}
$$

$$
\omega=\dot{i}^{\prime}\left(d 2_{1} \wedge d \overline{2}_{1}+d 2_{2} \wedge d \overline{2}_{2}+d z_{3} \wedge d \overline{2}_{3}\right) \text { Käbler form. }
$$

$\mathcal{L}=t$ t be the coordinate on R. Then

$$
\Psi=-d t \wedge \operatorname{lm} \Omega-\frac{1}{2} \omega \wedge \omega .
$$

when writer in real coordinates $\left(t, x_{j}\right), d z_{j}=d x_{2 i-1}+\sqrt{-1} d x_{2 i}$.

Back to complex world Alternatively, we can pick य to be a generic form in $\Lambda^{4} v^{v}, v \cong \mathbb{C}^{7}$. $\operatorname{dim} \Lambda^{4} v^{2}=\binom{7}{4}=35 . \operatorname{dom} \in L(v)=49$.

Generic mean the $G L(v)$ orbit of $2 p$ in $\Lambda^{3} v^{v}$ is open.

Then $\sigma_{\text {e }}=5$ stab $4=\operatorname{dim} 49-35=14$.

The G_{2} - variety

$$
\text { Define } \quad Z=\left\{w \subseteq v, \operatorname{dim} w=5,\left.w\right|_{w \times w \times w \times w} \equiv 0\right\}
$$

$Z \subset G\left(5, a^{7}\right)$ is cut out by a section of $\lambda^{4} y^{2}$.

$$
\begin{aligned}
\Rightarrow \operatorname{dim} z^{2} & =\operatorname{dim} G\left(5, \sigma^{7}\right)-r k \wedge^{4} J^{2} \\
& =5(7-5)-\binom{5}{4}=5
\end{aligned}
$$

Coindex

$$
\begin{aligned}
& \text { From } 0 \rightarrow T_{z} \longrightarrow T_{G\left(5, a^{2}\right)} /_{Z} \longrightarrow \Lambda^{4} J^{2} /\left.\right|_{z} \longrightarrow 0 \text { we find } \\
& K_{z} \cong \mathcal{O}_{2}(-3) \Longrightarrow \text { index } z=3 \Rightarrow \text { coindex } 2=3 \text {. }
\end{aligned}
$$

Plucker
Note $Z \longleftrightarrow G\left(\sigma, \mathbb{\sigma}^{7}\right) \longleftrightarrow \mathbb{P} \wedge^{5} \sigma^{7} \cong \mathbb{R}^{20}$.

Let $\psi^{\#}: \Lambda^{5} v \longrightarrow v$ is the contraction with 4

$$
w \text { is in } \nLeftarrow \mathscr{S}^{\# / a^{\sigma} w} \equiv 0
$$

The plïoker point $\Lambda^{5} w$ of W lies in sHer $w^{\#}$

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Ker} \psi^{*}=\operatorname{dim} \wedge^{5} v-\operatorname{dim} v=\left(\frac{7}{0}\right)-7=14 . \\
\Rightarrow & Z \subset \mathbb{R}^{13} .
\end{aligned}
$$

K3 surface of genus 10
Finally $x=2 \quad n H, O H_{2} \mathrm{HH}_{3} \longrightarrow \mathbb{I}^{10}$ is a K 3 surface of genus 10 .

$$
\begin{gathered}
\text { Math } 206-\frac{Z \text { oke } 5}{\text { January } 20,2020}
\end{gathered}
$$

Zeoture Notes in Canvas, "Files".
Plan

- genus $g=7$
- Conclusion \& remarks $3 \leq g \leq 10, g \neq 12$

Summary of laot tome
$Z=6 / s$ Fano of coindex 3 ．dim $z=r+2$ ．

I］$Z=G\left(2, a^{6}\right) \Rightarrow g=8$
［II $z=\alpha G\left(3, \sigma^{6}\right) \Rightarrow g=9$
（4i）$Z=S \in\left(3, \sigma^{7}, \omega_{1}, \omega_{2}, \omega_{3}\right) \Rightarrow g=12$ ．
（⿴囗⿰丿㇄ $\mathfrak{Z}=G_{2}\left(\sigma, c^{7}, \psi\right) \Rightarrow g=10$
v $\quad z=0,\left(5, a^{10}\right) \Rightarrow g=7$

Write $K_{z}=M^{-0}$ ，M prionitive，$H_{0} \in \mid M /$

These examples were discussed hast the except

$$
z=06(5,10) \cdot \text { or } z=06\left(n, a^{2 n}\right)
$$

Definition Q nondegenerak quadratic form on $V \cong a^{2 n}$
The orthogonal grassmanian is

$$
O G(n, 2 n)=\{w: \operatorname{dim} w=n, w \leq v, Q / w \equiv 0\} \text {. }
$$

Notation Gonsider the quadric:

$$
Y_{Q}=\{z \in \mathbb{P} V: Q(z)=0\} c \mathbb{P}^{2 n-1}
$$

$$
\text { Note } Q / W \equiv 0 \Rightarrow \underbrace{\mathbb{P} W}_{(n-1) d i m e} \subseteq Y_{Q}
$$

Model In local coordinates, we will take

$$
\begin{aligned}
& Q=z_{1} z_{2 n}+z_{2} z_{2 n-1}+\ldots+z_{n} z_{n+1} \\
& Q=\left(\begin{array}{ccc}
0 & \cdots & 1 \\
\vdots & 1 & 1 \\
\vdots & \vdots & 0
\end{array}\right) \\
& w \subseteq \sigma^{2 n} \cdot d, m w=n \\
& W=\operatorname{span}\left(w_{1} \ldots, w_{n}\right)
\end{aligned} \quad \rightarrow W=\left(\begin{array}{lll}
1 & 1 \\
w_{1} & \cdots & w_{n} \\
1 & 1
\end{array}\right)
$$

We will not distinguish between the vabospace \& matix.
W isotropic for $Q \Longleftrightarrow W^{t} Q W=0$

Question Why is $06(n, 2 n)$ subtler?

Reason\#' $O G(n, 2 n)$ has 2 components.

Example $n=1: Q=2 w$ on σ^{2}

$$
O G(1,2)=\left\langle r_{1}\right\rangle \text { and }\left\langle r_{2}\right\rangle \text {. }
$$

sign change from previous page
Example $n=2: \quad Q=x w-y z$ in σ^{4}

$$
Y_{Q}=\left\{x w-y^{z}=0\right\} c \mathbb{\pi}^{3}
$$

W_{e} have $Y_{Q} \cong \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$ via Segre embedding

$$
[a: b],[c: d] \rightarrow[a c: b c: a d: b d]
$$

Note Y_{Q} has 2 rulings, yielding two components

$$
O G(2,4)=\mathbb{B}^{\prime} L \mathbb{R}^{\prime}
$$

Underlying reason - 2 orbits for $50(2 n, \sigma)$ action.
$17 \quad V=\left\langle e_{1} \ldots r_{2 n}\right\rangle$, lot

$$
w=\left\langle e_{0} \ldots e_{n}\right\rangle, w^{\prime}=\left\langle e_{1} \ldots e_{n-1} e_{n+1}\right\rangle
$$

Check 四 w, w^{\prime} are in different orbits.
[II) w, w^{\prime} are in the same orbit if
$\operatorname{dim}\left(w n w^{\prime}\right) \equiv n \bmod 2$

Thus $06(n, 2 n)$ has 2 components $0 \sigma^{+}(n, 2 n) \& 0^{-(n, 2 n)}$.

These are isomorphic. We will just pick one of these components.

Convention $V=F+F^{2}$, dim $F=n$, F fixed. \& isotropic

$$
O G^{+}=\{w: \operatorname{dim}(W \cap F) \equiv n \bmod 2\} .
$$

Canonical bundle 2 coindex

$$
J \rightarrow G(n, 2 n) \text { subbundle, } J / w=[w]
$$

We have

$$
0 G(n, 2 n) \longleftrightarrow G(n, 2 n) \hookrightarrow \mathbb{P}\left(n^{n} \sigma^{2 n}\right)
$$

Note $G_{p}(1)$ restricts to $\operatorname{dot} J^{2}$ on $G=\sigma\left(n, \sigma^{2 n}\right)$

$$
\begin{aligned}
& Q: \operatorname{Sym}^{2} \mathbb{C}^{2 n} \longrightarrow \mathbb{Q} \rightarrow \tilde{Q}: \operatorname{Sym}^{2} \boldsymbol{J} \rightarrow \mathcal{O}_{G} \\
& O G=\operatorname{zero}(\tilde{Q}), \tilde{Q} \text { section of } J_{y m^{2} y^{2}} \\
& \operatorname{dim} O G=\operatorname{dim} G(n, 2 n)-\operatorname{rank} \operatorname{Sym}^{2} y^{2}=n^{2}-\binom{n+1}{2}=\frac{n(n-1)}{2} .
\end{aligned}
$$

As last time ese the computation for (G):

$$
\begin{aligned}
& K_{O G \pm}=K_{G} /_{O G^{ \pm}} \otimes \text { dot } \operatorname{sym}^{2} J^{2} /_{O G}= \\
& =(\operatorname{dot} 5)^{2 n} / \cos ^{t} \otimes\left(\operatorname{dot} J / \cos ^{t}\right)^{-(n+1)} \\
& =\left(\operatorname{det} J^{2} / o \sigma^{*}\right)^{-(n-1)}
\end{aligned}
$$

It appears that index $\left(0^{t}\right)^{t}=n-1$. This is not right.

Issue dot J/06t is not primitive but rather
2-divisible

Reason \#2
$\operatorname{det} J / \operatorname{OG}^{ \pm}$is mot primitive in $P i c\left(O G^{ \pm}\right)$

Example $n=2 \quad W=$ have shown $O \in(2,4)=\mathbb{P}^{\prime} \cup \mathbb{Z}^{\prime}$

If we pick one such I? consider Plücker embedding

$$
O G^{ \pm}(2,4) \cong \mathbb{P}^{\prime} \longleftrightarrow G(2,4)=\text { quadric in } \mathbb{P}^{5} \text {. }
$$

One can oheok that

$$
\begin{aligned}
& O_{\mathbb{P}^{5}}(1) /_{0 G^{ \pm}}=\operatorname{det} J^{2} /_{G^{ \pm}}=0_{\mathbb{P}^{1}}(2) \\
& \text { Indeed each }[0: 6] \in \mathbb{P}^{\prime} \text { yiolals } \\
& W=\left\langle a e_{1}+b e_{2}, a e_{3}+b e_{4}\right\rangle \text { isotropic } \\
& \Rightarrow \Lambda^{2} \omega=\operatorname{span}\left(a e_{1}+b c_{2}\right) \wedge\left(a c_{3}+b c_{4}\right) \\
& =a^{2} e_{1} \wedge c_{3}+b^{2} e_{2} \wedge c_{4}+a b\left(e_{1} \wedge c_{4}+e_{3} \wedge \tau_{2}\right)
\end{aligned}
$$

\Rightarrow Plucker coodinateo are quadratic in a \& b.

Question Why was dec J primitive for G or L6?

$$
\begin{gathered}
\text { Recall } G\left(k, \sigma^{n}\right) \longrightarrow \mathbb{P} \Lambda^{k} \mathbb{\sigma}^{n} \text { Plücker } \\
\quad d=t J=\mathcal{O}_{\mathbb{I}}(1) /_{\sigma(k, n)}
\end{gathered}
$$

Claim $7 \sum$ curve in $6(k, n)$ with $\operatorname{deg} \operatorname{det} J^{v} / \Sigma=1 \Rightarrow \operatorname{det} J$ primitive.

Proof Define

$$
\Sigma=\left\{w=\left\langle e_{1}, \ldots, e_{k \rightarrow 1}, t e_{k}+s e_{k+1}^{\rangle}:[t, s] e \infty^{\prime}\right\}\right.
$$

is a curve in $G(k, n)$. Then $\Sigma \cong \mathbb{P}^{\prime}$ and

$$
\operatorname{det} \mathcal{J} / \Sigma \cong O_{\Sigma}(-1) \Rightarrow \operatorname{degree} \operatorname{det} \mathcal{J}^{\prime} / \Sigma=1
$$

Remark
Not that Σ can be described as

$$
\tilde{w}+w_{0} \text { where } \tilde{w}=\left\langle e_{1} \ldots e_{k-1}\right\rangle
$$

and $w_{0}=\left\langle t \tau_{k}+\delta e_{k+1}\right\rangle=$ varying hie.

Aside
(1) The same argument works for $L C(n, 2 n)$

$$
\Sigma=\left\{w=w_{0}+\tilde{w}: \tilde{w} \in L 6(n-1,2 n-4)\right. \text { fixed }
$$

$$
\text { \& } \left.W_{0} \text { varies in } \angle G(1,2)=G(1,2)=\mathbb{T}^{1}\right\}
$$

(2) In the care of $O G^{ \pm}(n, 2 n)$

$$
\begin{gathered}
\Sigma=\left\{w=w_{0}+\tilde{w}: \tilde{w} \in O G^{+}(n-2,2 n-4) f x=d\right. \\
\left.w_{0} \text { varies in } O G^{+}(2,4) \cong \mathbb{P}^{\prime}\right\}
\end{gathered}
$$

gives a degree 2 curve because of previous example.

Question What is the primitive generator?

$$
O G^{ \pm}(n, 2 n) \longleftrightarrow \mathbb{P} S^{ \pm} \text {spinor embedding }
$$

We will see that Ops (1)/OGt is primitive and

$$
\operatorname{det} J^{v} \cong O_{P^{ \pm}}(2) / O_{G^{ \pm}}
$$

Construction $W \subseteq \mathbb{C}^{2 n}$ isotropic for Q. Represent w by

$$
\begin{aligned}
& \text { a matrix \& row reduce it to } w=\binom{I}{u} . \\
& W^{t} Q W=\left(\begin{array}{ll}
I & u^{t}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{I}{u}=u+u^{t}=0 \\
&
\end{aligned} \begin{aligned}
& \Rightarrow u \text { skew oymmotic }
\end{aligned}
$$

Recall Plücker embedding

$$
G(n, 2 n) \longrightarrow \mathbb{P} \Lambda^{n} \mathbb{C}^{2 n}, \quad W \longrightarrow ヘ^{n} W
$$

$u \longrightarrow$ all $n \times n$ minors of W

$$
=\text { all } \delta \times j \text { minors of } u, 0 \leq j \leq n
$$

Crucial Remark A kew symmetric, $A+A^{t}=0$

- A has odd dimension $\Rightarrow \operatorname{det} A=0$
- A has vern dimension $2 k \times 2 k$

$$
A=\left(\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right) \Rightarrow \operatorname{det} A=a^{2}, \quad \text { If }(A)=a \Rightarrow \operatorname{dot} A=\operatorname{Pf}(A)^{2} \text {. }
$$

$$
\text { Define } \operatorname{Pf}(A)=\frac{1}{2^{x} k!} \sum_{F \in S_{2 k}}(-9)^{r} a_{F(i) r a)} \ldots a_{\sigma(2 k-1) \sigma(a k)}
$$

$$
\begin{aligned}
& \text { Better If } A=\left(a_{i j}\right), d=f i n e \\
& \qquad \omega=\sum_{i \ll j} a_{i j} e_{i} A e_{j} \Rightarrow \frac{1}{k!} \omega^{k}=\operatorname{Pf}(A) e_{1} a \ldots \wedge \varepsilon_{2 k}
\end{aligned}
$$

Indeed $\omega \wedge \ldots \cap \omega$ is a $2 k$ _form so it is proportional to $e, \wedge \ldots \wedge e_{2 k}$.

Important fact

$$
\operatorname{Pf}(A)^{2}=\operatorname{dot} A
$$

Proof $A=c^{\top}\left(\begin{array}{ccc}0-\lambda_{1} & & \\ \lambda_{1} & 0 & \\ & & \\ & & 0-\lambda_{n} \\ & & \\ & & \\ n & 0\end{array}\right) \quad$ \& compute using

$$
\begin{aligned}
\operatorname{det}\left(C^{t} B C\right) & =(\operatorname{det} C)^{2} \operatorname{det} B \\
\text { Pf }\left(c^{t} B C\right) & =\operatorname{det} C \cdot \operatorname{Pf}(B)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Spinor umbedding } \\
& O G^{ \pm}(n, 2 n) \stackrel{i}{\longleftrightarrow} \mathbb{C} S^{ \pm} \\
& u \quad \longrightarrow \text { All Pffafians of proncipal } \\
& 2 j \times 2 j \text { minors. of } u \text {. }
\end{aligned}
$$

$\operatorname{dim} 5^{ \pm}=2^{n-\rho}$

A more canoonical definition reguires pure spinors.
$\underline{n=2}$ This construction y velds $O \mathbb{G}^{ \pm}(2,4) \cong \mathbb{P}$.

Why is $O \in{ }^{\prime} \longrightarrow \mathbb{D} S, \quad O_{\text {ps }}(1) /$ os primitive?

Woe the sam= curve

$$
\Sigma=\left\{\begin{array}{r}
W=W_{0}+\tilde{W}: W_{0} \in O G(2,4) \text { vary mg } \\
\left.\tilde{W} \in O G^{+}(n-2,2 n-4) f_{x=d}\right\}
\end{array}\right.
$$

Back to $\mathrm{OG}^{ \pm}(n, 2 n)$

$$
\text { We see index }=2(n-1)
$$

$$
\Rightarrow \operatorname{coindex}=1+\frac{n(n-1)}{2}-2(n-1)=3 \Leftrightarrow n=\sigma .
$$

Outcome $\quad g=7$

$$
\begin{aligned}
& \text { dim } O G^{t}(5,10)=10 \text {. The spinor embedding } \\
& \mathcal{Z}=O G^{ \pm}(\sigma, 10) \longleftrightarrow \mathbb{P}^{15} \text { has degree } 12 \text {. } \\
& X=z n H \cdot n \ldots H_{8} \longrightarrow \mathbb{P}^{7} \\
& C=Z \cap H, n \quad n H_{g} \text { is a genus } 7 \text { curve }
\end{aligned}
$$

Remark $W=$ can also vic $X \longrightarrow G\left(2, \Phi^{\sigma}\right)$ cut out by
a section of $G(1)+\mathcal{O}_{6}(1)+J^{V}(1)$. to describe $g=7$

K3s. But the above picture involving oc \pm is more uniform.

Conclusions

Remark The above constivotons show for unirational
$3 \leq g \leq 10$ \& $g=12$. (with mon work).

F unirational if $\exists N \quad A^{N} \rightarrow \mathcal{F}$ dominant

$$
\begin{aligned}
\text { Example } g=8: & Z=G\left(2, \mathbb{a}^{6}\right) c \mathbb{P} \Lambda^{2} \mathbb{C}^{6}=\mathbb{P}^{43} \\
& x=Z \cap H_{0}, n \ldots n H_{6}, H: G / O_{\mathbb{p}^{14}}(1) /
\end{aligned}
$$

To determine x we need to pick a point in

Grass (6, $\left.\mathrm{H}^{\circ}\left(Z, \mathrm{O}_{2}(1)\right)\right)$
and divide by PGL6. Thus
$\operatorname{Grass}\left(6, H^{\circ}\left(Z, O_{z}(1)\right)\right) / P G L_{6} \longrightarrow-\rightarrow \mathcal{F}_{8}$.

Count moduli; : dim Grass $=6 \cdot(15-6)$
$\operatorname{dim} P G L_{6}=3 \sigma$
dim $F_{8}=19$.

Thus we expect the map to be dominant (it is) \&
thus F_{8} is dominated by a rational variety Grass $\left(6, \sigma^{15}\right)$
hence it is unirational.

Flow about genus 8 curves?

Intersect one more time. with a hyperplane

$$
c=z n H, n \ldots n H_{7} .
$$

$\operatorname{Grass}\left(7, H^{0}\left(z, G_{z}(1)\right)\right) / P G L_{6} \ldots M_{8}$
count moduli \& match: dim Grass $=7(15-7)$

$$
\text { dim PGL } 6=35
$$

Match!

$$
\operatorname{dim} M_{8}=3.8-3
$$

This argument eventually shows M_{g} is unirational.

Unirotonality of F_{g} is established by these methods for

$$
3 \leq g \leq 10 \quad \& g=12
$$

What about other values of g ?

- $g=11,13,16,18,20$ Mukai by pushing the above descriptions
- $g=14,22$ Farkas - Dora

$$
-g=45,51,53,55,58,59,61, g>62, \mathcal{F}_{g} \text { general type }
$$

Hulok - Gritschento - Sankaran (2007)

$$
S
$$

using number theory/representation theory

Question Find a proof of Jg general type using only algebraic $g=0 m=t y$.

Compare this with Mg_{g}

- $g \leq 10$ Severi proved $M g$ is unirational (1915)

Ire conjectured Mg unirational for all g, but this turned out false.

The K3 methods recover Severi's reecult for $g \leq 9$.
What goes wrong for us when $g=10$? (later).

- $9=16$ Chang-Ran claimed the same, but the proof does mot hold.

Aside - Severi's idra (works for $g \leq 10$)

Show

- Hilb $\delta_{8} \pi^{2}$ ratuonal
- N is birational to a progeative
bundle over $H_{i} l_{\delta} \mathbb{p}^{2}$ so rational
- π dominant

Mg unirational

The cave $g=10$ Why don't the above me thodo show
M_{10} is rational? (But show \mathcal{F}_{10} is rational.)

Recall $Z \longleftrightarrow \mathbb{R}^{\prime 3}, \operatorname{dim} Z=5, Z=\varrho_{Q}$-variety

$$
\begin{aligned}
& x=2 n H_{1} n H_{2} n H_{3} \\
& c=Z n H_{1} n H_{2} n H_{3} n H_{4}
\end{aligned}
$$

where H_{i} are hyperplanes in $\mathbb{R}^{\prime 3}$.

For curves
Grass $\left(4, \sigma^{14}\right) / G_{2} \rightarrow M_{10}$

$$
d_{m}=4(14-4)-14=26
$$

$$
\operatorname{dim} M_{10}=3 g-3=27
$$

This is the only case where the dimension count fails.

Thus a goneric cürve of genue $g=10$ does not hie on a K3
surface.

$$
\int^{26} \int^{27}
$$

\Longrightarrow Divirior of curves on K3's $_{\Longrightarrow}^{\longrightarrow} M_{10}$

Shdied by Cakierman (1989) \& Farkas - Popa (2004)
to disprove the slope congecture of Mo-nison-Ilarnis.

Final Remark Calabi-Yau 3-folds

$$
\begin{aligned}
& h^{\prime}\left(Y, O_{Y}\right)=\hbar^{2}\left(Y, O_{Y}\right)=0 \\
& K_{Y} \cong O_{Y}
\end{aligned}
$$

are connected with Fano variefiee of coindox 4 .
us clasrification due to Carla No volli.

However we already have many examples of CY's.

$$
\begin{gathered}
\text { Math } 2203-\text { Feature } 6 \\
\text { January } 22,2021
\end{gathered}
$$

Plan - double covers \& Riomans - Harwitz

- genus $g=2$ K3 sarfaces
- elliptic k3 surfaces.

Pahul's Lecture on Janciary 29, 10:30-12

Method, - Gomplote interaections in Fano manifolds $3 \leq g \leq 10$

Mothod 2 - Gyolic (branohed) eovers

- y smooth
- $\Delta \longleftrightarrow^{5=0} y$ smooth divisor
- $\mathcal{Z} \longrightarrow Y, \alpha^{B n} \equiv G_{\gamma}(\Delta)$

This data olotermin=s $x \underset{n=1}{\longrightarrow}>$ branaked along D.

Plan IG give construction
(ci compute $H^{\prime}\left(x, O_{x}\right)$ \& canonical K_{x}

Outcome Do we get a K3 surface?
(II) analyze examples

IV formulate some questions.

Construction $\underline{Z}=$ total space of $Z, p: \underline{Z} \longrightarrow Y$
(a) $p^{*} \mathcal{Z}$ has a canonical section t

This is clear set -theoretically.

Indeed, points of $\underline{\underline{Z}}$ are pains $(y, l), b \in L_{y}$.
The section

$$
t(y, \rho)=l \in \alpha_{y}=\left(p^{*} \alpha\right)_{(y, l)} .
$$

Scheme - theoretically
section $p^{*} Z \Longleftrightarrow \mathcal{O}_{\underline{2}} \longrightarrow p^{* Z}$

$$
\begin{aligned}
& \Leftrightarrow p^{*} z^{2} \longrightarrow \mathcal{O}_{\underline{z}} \quad(\text { dualizz) } \\
& \Leftrightarrow z^{-1} \longrightarrow p_{*} O_{\underline{\alpha}} \quad(\text { adjoint furctors) }
\end{aligned}
$$

There is a canonical choice since

$$
p_{*} O_{\underline{\alpha}}=\mathscr{y}_{y m} \cdot z^{2}=\underset{j}{\circledast} \mathcal{Z}^{-j}
$$

百

$$
\begin{aligned}
& \text { Define }=x \subseteq \underline{Z} \text { by the vanishing } \\
& \quad p^{*} s-t^{n}=0 \text { as a section of } p^{*} y^{n} \rightarrow \underline{Z}
\end{aligned}
$$

Note $\bar{\pi}: \times \longrightarrow \frac{Z}{l}$ is $n=1$ \& branched at $s=0$.
\therefore i. π branched along 0 .

Local coordinates

$$
y \hookleftarrow V \leftharpoonup \sigma^{m} \text { coordinates }\left(y_{1}, \ldots, y_{m}\right)
$$

$$
z / v \cong V \times \mathbb{C} \quad \text { coordinates }\left(y_{n} \ldots y_{m}, t\right)
$$

$$
z_{z}+D=\left\{y_{0}=0\right\} \text { in }
$$

$p^{*} \mathcal{Z} \longrightarrow V \times \in$ is trivial with section

$$
t\left(y_{1} \ldots y_{m}, t\right)=t
$$

$$
\begin{aligned}
& x \supseteq \pi^{-n}(V) \subseteq \frac{V x \mathbb{C}}{(y, t)} \text { given by }\left\{y_{1}=t^{n}\right\} \Leftrightarrow p^{*} s=t^{\otimes n} \\
& l^{\pi} \downarrow \\
& y \geq V
\end{aligned}
$$

$$
\begin{aligned}
& \text { - suMMA ARY } \\
& X \geq \pi^{-1}(v) \text { hah coordinate (} t, y_{2}, \ldots, y_{m} \text {) } \\
& \downarrow \pi \\
& Y \geq \text { has coordinates }\left(y_{1}, y_{2} \ldots y_{m}\right)=\left(t, y_{2}, \ldots, y_{m}\right. \\
& y_{1}=t^{2}
\end{aligned}
$$

$\operatorname{Zumma} \pi_{*} O_{x}=\sigma_{r}+\mathcal{Z}^{-9}+\ldots+\mathcal{Z}^{-(n-1)}$

Proof We give a proof in the analytic category. Toke $V \subseteq Y$ sufficiently small coordinate chart, $Z / V \cong V \times \mathbb{C}$.

To rack $f \in\left(\pi_{*} G_{x}\right)(v)=O_{x}\left(\pi^{-1} v\right)$ we show how to associak $\left(a_{0}, \ldots, a_{n-1}\right)$ sections of $0, z^{-1}, \ldots, z^{-(n-1)}$ over V. in a manner compatible with restrictions.

Extend f to \mathcal{f}^{\sim} in $\underline{Z} / v \cong v \times \sigma$ \& Taylor Expand in a small poly disc

$$
\tilde{f}=\sum_{k=0}^{\infty} t^{k} p^{*} A_{k}, \quad A_{k} \in r\left(v, z^{-k}\right)
$$

Wong $t^{n}=p^{* s}$ on x, we rewrite

$$
f=\left.\tilde{f}\right|_{x}=\sum_{k=0}^{n-1} t^{k} p^{*} a_{k}, \quad a_{k} \in r\left(v_{j} \mathscr{L}^{-k}\right) .
$$

The association $f \rightarrow\left(a_{0}, \ldots a_{n-1}\right)$ is the isomorphism of the Lemma.

Take $n=2 \Rightarrow \pi_{*} O_{x}=O_{y}+\mathcal{Z}^{-1}$.

$$
\begin{gathered}
H^{\prime}\left(x, O_{x}\right)=H^{\prime}\left(r, \pi_{*} O_{x}\right)=H^{\prime}\left(Y, O_{y}\right)+H^{\prime}\left(Y, J^{-1}\right) . \\
\pi \text { finite }
\end{gathered}
$$

Corollary $H^{1}\left(x, \mathcal{G}_{x}\right)=0$ provided.

$$
H^{\prime}\left(Y, O_{Y}\right)=H^{\prime}\left(Y, Z^{-1}\right)=0 .
$$

What about the canonical bundle?

Hlurwitz formula $K_{x}=\pi^{*}\left(k_{\gamma} \otimes \bar{Z}^{n-1}\right)$

Take $n=2 \quad K_{x} \cong \pi^{*}\left(K_{y} \otimes z\right) \cong \sigma_{x}$
Conclusion X is K3 surface iff y surface
(1) $H^{\prime}\left(r, O_{r}\right)=0$
(2) $D \in /-2 k_{r} /$ smooth

Indeed, take $\alpha=k_{y}{ }^{-1}$. Use Serve duality to see $H^{\prime}\left(x, \alpha^{-9}\right)=0$
inoof of Hurwitg

$$
\begin{aligned}
& n=2: \quad k_{x}=\pi^{*}\left(k_{y} \oplus z\right) . \\
& X \geq \pi^{-1}(v) \text { has coordinates }\left(t, y_{2}, \ldots, y_{m}\right) \\
& l^{\pi} l \\
& Y \geq V \quad \text { has coodinaks }\left(y_{1}, y_{2}, y_{m}\right)=\left(t^{2}, y_{2}, \ldots, y_{m}\right.
\end{aligned}
$$

$Z=t R=\frac{1}{2} \pi^{*} D$. Indeed $\pi^{*} D$ is not reduced since

$$
\pi^{*} y_{1}=t^{2} . \Rightarrow R=\{t=0\} \Rightarrow O_{Y}(R)=\pi^{*} \mathcal{J} \text {. We show }
$$

$$
K_{x}-R=\pi^{*} K_{r}
$$

Note K_{Y} is spanned by $d y, A \ldots \wedge d y_{m}$
$\pi^{*} K_{Y}$ is spanned by $d \pi^{*} y_{1} \wedge \ldots \wedge y_{m}=$

$$
=2 t d t \wedge d y_{2} \wedge \ldots \wedge d y_{m}
$$

R_{x} is spanned by $d t \wedge d y_{2} \wedge \ldots \wedge y_{m}$ $O_{Y}(-R)$ is spanned by t

$$
\Rightarrow \quad \pi^{*} K_{y}=K_{X}-R \text { as needed. }
$$

$$
\text { Example } \quad(g=2)
$$

$$
\text { Take } Y=\mathbb{P}^{2}, K_{y} \cong O(-3) \Rightarrow \Delta \in \mid O_{p}(6) /
$$

Pick D a smooth sextic \& construct

$$
X \xrightarrow{\pi} \mathbb{P}^{2} \text { double cover branohed along } D \text {. }
$$

$\Rightarrow X$ is K3 surface.

$$
L^{L}=t \ddot{Z}=\pi^{*} G_{p^{2}}(1) \Rightarrow \dot{z}^{2}=2=2 g-2 \Rightarrow g=2 \text {. }
$$

$$
\text { Count moduli: } \quad \operatorname{dim} \mathbb{I} H^{0}(\mathbb{P} ; \underset{r e}{*}(6))-\operatorname{dim} p 6 L_{3}=19
$$

Silly Question

What happens if $g=1$? In this case,

$$
\begin{gathered}
(x, z), \quad z^{2}=2 g-2=0 \\
\text { Example } x \rightarrow \mathbb{P}^{\prime}, \quad z=O(f) .
\end{gathered}
$$

Genus of smooth fiber:

$$
2 \text { genus }-2=z^{2}+z \cdot k=0 \Rightarrow \text { genus }=1 \text {. }
$$

We wall in foot show la kor that

$$
\alpha \neq 0, \Sigma^{2}=0 \Rightarrow x \text { is elliptic fibration }
$$

Beware Z may not be the class of a fiber

Question Examples?

What other surface can wetry?

$$
\begin{aligned}
& \text { (I) } Y=\mathbb{P}^{\prime} \times \mathbb{E}^{\prime}, D \in(4,4) \text { smooth curve } \\
& \times \xrightarrow{\pi} Y \text { double cover branched along } D \text { is } K 3 . \text { surface }
\end{aligned}
$$

Two divisors $O_{1}=\pi^{*}\left(p^{\prime} \times p^{t}\right) \in P_{i c}(x)$

$$
D_{2}=\pi^{*}\left(p^{t} \times \mathbb{R}^{\prime}\right) \in P_{i c}(x)
$$

$$
\Rightarrow D_{1}^{2}=0, D_{2}^{2}=0, D_{1} \cdot D_{2}=2
$$

Thus $\Lambda=\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right) \longleftrightarrow \operatorname{Pic}(x)$ so this is a opeciol K3.
(Noether - Zofschatz locus)

A very interesting situation occurs for Hirzebruch surfaces.

$$
\begin{aligned}
\mathbb{F}_{n} & =\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{\prime}}+\mathcal{O}_{\mathbb{P}^{\prime}}(n)\right) \longrightarrow \mathbb{P}^{\prime} \\
n=0 \quad \Rightarrow F_{0} & =\mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \Rightarrow \text { last example. }
\end{aligned}
$$

Example (Elliptic surfaces) $n=4$

$$
Y=F_{4} \quad \mathcal{F l i r z}=\text { bruch surface. }
$$

Exercise $H^{\prime}\left(Y, O_{Y}\right)=0$

$$
\Delta \in\left|-2 k_{Y}\right| \Rightarrow X \underset{2: 1}{\pi} Y \text { is } \quad \Rightarrow 3 \text { surface }
$$

We well check x is a kB surface. \& say a bit more.

First - A short discueven of Flirgebruch surfaces.

$$
\begin{aligned}
& \mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\pi^{\prime}}+\mathcal{O}_{\pi^{\prime}}(n)\right) \text { is a } \mathbb{P}^{\prime} \text {-bundle over } \mathbb{Z} \text {.' } \\
& V^{\pi} \\
& \mathbb{P}^{\prime}
\end{aligned}
$$

$\operatorname{Remark} \mathbb{P}(v) \cong \mathbb{P}(v \otimes Z)$.

Thus $F_{n} \cong \mathbb{E}_{-n}$ taking $V=O_{\pi^{\prime}}+O_{\pi^{\prime}}(n)$ \& $\mathcal{Z}=O_{\pi^{\prime}}(-n)$.

$$
\text { Take= } n>0 \text {. }
$$

Fact (H. ch V.I)
$\mathbb{P}(\nu) \longrightarrow C$ ruled surface

$$
\text { Pic } \mathbb{Z}(\nu)=\pi^{*} \operatorname{Pic}(c)+\mathbb{Z}
$$

In our case $P_{i^{\prime} c}\left(\mathbb{F}_{n}\right)=\mathbb{Z}+\mathbb{Z}$.

Turre classes.
[曹 Fber $f, 7^{2}=0$
[12] sections $\sigma_{0}, \tau_{\infty}$

We have $\sigma_{0}^{2}=n, \sigma_{\infty}^{2}=-n$. (next page)

$$
\tau_{0} \cdot f=\tau_{\infty} \cdot f=1 \Rightarrow \tau_{\infty}-\tau_{0}=a f .
$$

Since ${\tau_{0}}^{2}=n,{\sigma_{\infty}}{ }^{2}=-n \Rightarrow a=-n \Rightarrow \sigma_{0}=\sigma_{\infty}+n f$

$$
\begin{aligned}
\Longrightarrow \quad \sigma_{0} \cdot \nabla_{\infty} & =0 . \text { Jince } \\
\tau_{0} \cdot \tau_{\infty} & =\sigma_{\infty}\left(\tau_{\infty}+n f\right)=-n+n=0 .
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{P}\left(O_{c}+z\right) \\
\sqrt{\pi}\} \\
C \cong \mathbb{P}^{\prime}
\end{gathered}
$$

In general if $V=O_{c}+\mathcal{L} \rightarrow c, \mathbb{P}(\nu) \underset{\sigma}{\underset{\sim}{\pi}} c$
Z at σ corropond to $c=\mathbb{Z}\left(\theta_{c}+\underline{O}\right) c \mathbb{Z}\left(\theta_{c}+\underline{Z}\right)$

$$
\begin{aligned}
& N_{\nabla / \mathbb{L} \nu} \cong \mathcal{Z} \\
& \sigma^{2}=\operatorname{dog} Z
\end{aligned}
$$

In our case, $F_{n}=\mathbb{E}\left(\Theta_{\tau_{1}}+\hat{p}_{p}(n)\right), \underset{p}{ }=\underset{p}{ } \mathcal{O}_{n}(n)$ gives the seckon σ_{0} with $\sigma_{0}^{2}=n$.

Similarly, $\mathbb{F}_{n} \cong \mathbb{P}\left(\mathbb{O}_{r_{1}}+\underset{p_{1}}{G(-n)}\right), Z=\mathcal{O}_{p^{\prime}}(-n)$ gives the section σ_{∞} with $\sigma_{\infty}^{2}=-n$

$$
\text { Claim } K_{F}=-2 \Gamma_{\infty}-(n+2) f
$$

Write $k_{\mathbb{E}}=a \sigma_{\infty}+b f$.

Adjunction for $\Gamma_{\infty} \cong \mathbb{E}^{\prime} \& 7 \cong \mathbb{P}^{\prime}$ gives

$$
\begin{aligned}
-2=2 \text { genus }\left(F_{\infty}\right)-2 & =\tau_{\infty}^{2}+K_{\mathbb{F}} \cdot \tau_{\infty} \\
& =\tau_{\infty}^{2}+\left(a \tau_{\infty}+b f\right) \sigma_{\infty} \\
& =-n-a_{n}+b \\
-2=2 \text { genus }(f)-2= & f^{2}+K_{F} \cdot f \\
& =f^{2}+\left(a \sigma_{\infty}+b f\right) f \\
& =a
\end{aligned}
$$

Solving we find $a=-2, b=-n-2$.

Linear series on Flirzebruch surfaces

Lemma $I T$ b ave point free of $m \geq n$
[II] $\sigma_{\infty}+m f$ very ample iff $m>n$.

$$
\text { Proof } D=\sigma_{\infty}+m f \Rightarrow D . \sigma_{\infty}=m-n
$$

$$
\Delta b p f \Rightarrow \Delta . r_{\infty} \geq 0 \Rightarrow m \geq n
$$

Δ very ample $\Rightarrow \Delta . \Gamma_{\infty}>0 \Rightarrow m>n$.

Conversely
ll L Let $p \in F_{n}$. Wioh to find $c \in / \sigma_{\infty}+m f /$
with $p \notin c$. We wall pick the curve C to be
either $\sigma_{\infty}+m$ fibers or $\Gamma_{0}+(m-n)$ fibers depending
on $p \notin \Gamma_{\infty}$ or $\beta \in \Gamma_{\infty}$ (and hence $p \notin \Gamma_{0}$). The fibers are chosen not to pass through p.

Proof by picture We have two cases:
$\rho \notin \sigma_{\infty}$

$$
\frac{p \in \Gamma_{\infty}}{7 \quad(m-n)-\text { fibers. }}
$$

$$
C=F_{\infty}+m \text { fibers not }
$$

$$
c=F_{0}+(m-n) \text { fibers }
$$

through p
$c \in / \sigma_{\infty}+m f \mid$
(6) We wish to separak points \& tangent vectors.
$Z=t p, q \in F_{n}, p \neq q$. (or point p \& tangent rector t)

Proof by picture very similar to , st case. (H.V)

- pig not in the same fiber \& not both in r_{∞}.

$$
c=F_{\infty} \rightarrow m \text { fibers }
$$

one through p, none through q

$$
\text { - } p, q \in \Gamma_{\infty}
$$

$$
c=\sigma_{0}+(n-m) \text { fibers }
$$

one through p, none through2

- p,ze sam=fber $\quad D=\sigma_{\infty}+m f$

$$
\operatorname{cop}_{2} / /
$$

Conclude using (1) \& (2):
(1) $O_{F}(\Delta) /_{f}=O_{f}(1)$ is very ample on f so reparates $p \& 2$.

5 suryeative
(2) $H^{0}\left(\sigma_{F}(\Delta)\right) \rightarrow H^{0}\left(O_{F}(D) / F\right)$. Suffices to oheck

$$
\begin{aligned}
& H^{\prime}\left(O_{\mathbb{F}}(D-f)\right)=0 \text {. Nole } \\
& \pi_{*} \mathcal{O}_{\mathbb{F}}(D-f)\left.=\pi_{*} G\left(r_{\infty}+(m-1) f\right)=\pi_{*} O\left(r_{\infty}\right) \otimes O_{p-1}\right) \\
&=\left(O_{p^{\prime}}+\mathcal{O}_{p^{\prime}}(n)\right) \otimes \mathcal{O}_{\mathbb{p}^{\prime}}(m-1)
\end{aligned}
$$

which has no H!

Remark
if $m \geq n \Rightarrow / \sigma_{\infty}+m f /$ contains smooth erred curve
why? if
(b) $m>n$-because of Bertini \& very ampleness
["] $m=n$ - take σ_{0}.
$\underline{R=m a r k}$ Take $n>0, a \neq 0,6 \neq 0$ (H.chp $\bar{v})$.
$\bar{C} a \tau_{\infty}+b f$ very ample $\Longleftrightarrow b>a n>0$
why? "<="

$$
a \tau_{\infty}+b f=(a-1)(\underbrace{\tau_{\infty}+n f}_{b \rho f})+\underbrace{\tau_{\infty}+\mu f}_{\text {very ampto }}, \mu>n
$$

隹 $/ a \tau_{\infty}+b f /$ contains smooth irred curve $\Leftrightarrow b \geq a n>0$
Why? $\models "$ Bertini $+\varepsilon$ if $b=a_{n}$

The argument for $b=a n$
$a\left(\sigma_{\infty}+n f\right)$ contains a smooth irred curve

Lot $Z=V_{\infty}+n f$, which is basepoint froe. It induces

$$
|x|: F_{n} \xrightarrow{\pi} \mathbb{P}^{n+1}
$$

chock $\quad x(z)=y(0)+\frac{z\left(z-K_{F}\right)}{2}=n+2$.

$$
\nabla_{\infty} \cdot z=0 \quad \Rightarrow \sigma_{\infty} \text { contracted to } p
$$

$\bar{\pi}$ is birational

Verify
(1) σ_{0}^{\prime} has degree $\alpha^{2}=n$
(2) Vo is hyperplane section $_{0}$
take $n+1$ points in F_{0},
span a hyperplane H
Γ_{0}^{\prime} is contained in H (3)

$$
c^{\prime} \in|a H|, p \notin c^{\prime}
$$

smooth a irreducible possible Eff by Bertin:
(4) $c=\pi^{-1}(c)$ is smooth
\& irreducible

(5) $C \in / \mathcal{Z}^{\oplus a} /$ is a smooth \& irred curve

The case $n=4 \quad \times \underset{2: 1}{\vec{\pi}} F_{4}$ double cover branched at D.

$$
W_{e} \text { need }
$$

$$
\Delta \in|-2{\underset{F}{F}}|=\left|4 \nabla_{\infty}+12 \mathrm{f}\right|
$$

We don't expect smooth \& irreducible 0 .

However, we can take D of the form

$$
0=\sigma_{\infty}+\tilde{0} \text { possible by the above }
$$

$\tilde{b} \in\left|3 F_{\infty}+12 f\right|$ smooth \& inceduoible (see above)
$\sigma_{\infty} \cdot \tilde{D}=\sigma_{\infty}\left(3 \sigma_{\infty}+12 f\right)=0 \Rightarrow \sigma_{\infty}, \tilde{D}$ disjoint

The K3 surface

$$
\begin{aligned}
& F^{2}=0 \text { fiber } \\
& F=\pi^{*} f \\
& S=\frac{1}{2} \pi^{*} \sigma_{\infty} \\
& \Longrightarrow \quad F_{S}=15^{\text {section }} \\
& \underset{s \cong \pi^{\prime}}{\vec{s}} s^{2}=-2 \quad(u \sec n=4)
\end{aligned}
$$

In fact,

- $\times \underset{S}{\underset{\sim}{G}} \mathbb{R}^{\prime}$ is elliptic fibration
- $F=$ fiber,$s=$ section.

Note

$$
\Lambda=\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right) \leftrightarrow \operatorname{Pi}_{i}(x)
$$

Conclusion

$$
\Lambda=\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right) \longleftrightarrow \operatorname{pic}_{i}(x) .
$$

(1) wa constructed elliptic K3's with sections as double covers of F_{4}
(2) \exists moduli space \tilde{f}_{1}
F_{1} is unirational. (Miranda 1981)
rational (LzJarraga, 1993)

These questions make sense for arbitrary lattices.

$$
\Lambda \hookrightarrow P_{\cdot} \cdot c(x)
$$

$\left(7\right.$ moduli space F_{1} of A-polarized K K's which we will discuss
laker).

Queston
(,) $1 \mathrm{~s} \mathcal{F}_{\wedge}$ unirational?
(2) Study the topology of \mathcal{F}_{1} ?
(a) $\Lambda=\langle 2 g-2\rangle \leadsto$ Mukai a Hulok- Gritsonko:

- Santaran

直 $\hat{=}=\left(\begin{array}{cc}0 & 1 \\ 1 & -2\end{array}\right) \cdots$ see above

回 $\Lambda_{k}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 k\end{array}\right) \quad$ ganeral type for $k \geq 220$
Fortuna - MeZZ=domi (2020)
id) high rank lattices. M Dolgachov.
plan

- short discussion of topology of K3s
- hnear series on K3s
(1) $z^{2}>0$ \& Reider Kehnigues
(2) $z^{2}=0 \Rightarrow$ elliptic surfaces
- moduli of K3s constructed.

$$
\begin{gathered}
\text { Math } 2203-\mathcal{Z e o t u r e} 7 \\
\text { January } 27,2021
\end{gathered}
$$

plan

- general discussion of topology of K3s
- some ideas that go in the construction of the moduli space
- hear series on NUs
(1) $z^{2}>0$ \& Reider Eahnigues
(2) $z^{2}=0 \Rightarrow$ elliptic surfaces

Instead of the usual lecture

Pahul's AG Seminar on Friday
(Tim= has changed to 11:30-1).

Topological invariants of $k 3$ surfaces

Fact All kB surfaces are homeomorphic.

In light of this, the results below should not be surprising.
I. Old Facts

Recall (Feature 2)

$$
\begin{gathered}
e_{\operatorname{top}}(x)=24 \quad \text { because } x\left(x, O_{x}\right)=\frac{k_{x}^{2}+e(x)}{12} . \\
\Rightarrow \quad 6_{0}(x)=1 \\
6_{2}(x)=22 \\
6_{4}(x)=1 \quad b_{1}(x)=0 \\
6_{3}(x)=0
\end{gathered}
$$

Example 1 $\quad x \longleftrightarrow \mathbb{B}^{3}$ quartic surface

$$
c_{2}\left(T_{x}\right)=6 H^{2} / x=24 \text { since }
$$

$$
x g^{u a r t i c} \Rightarrow H^{2} / x=4
$$

$$
\begin{aligned}
& e_{\text {top }}(x)=\int_{x} c_{2}\left(T_{x}\right) \quad \text { Poincare -Hopf/Gouss - Bonnet } \\
& 0 \rightarrow T_{x} \rightarrow T_{p^{3}} / x \rightarrow O_{x}(4) \rightarrow 0 \\
& 0 \rightarrow O \longrightarrow O\left(1 \otimes c^{4} \longrightarrow T^{\top} \rightarrow 0 .\right. \\
& c\left(T_{x}\right)=\frac{c\left(T_{\pi^{3}} / x\right)}{c\left(O(4) /_{x}\right)}=\frac{c\left(O_{x}(1)\right)^{4}}{c\left(O_{x}(4)\right)}=\frac{(1+H / x)^{4}}{1+4 H /_{x}}= \\
& \left.=\left(1+4 H / x+6 H^{2} / /_{x}+\ldots\right)(1-4 H /)_{x}+16 H^{2} /{ }_{x}-\ldots\right) \\
& =1+6 H^{2} / x
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& x \rightarrow \mathbb{R}^{1} \text { elliptic fobration, } x=k 3 \text { (0) (0) }\{ \\
& S \subseteq \mathbb{R}^{\prime} \text { singular fibers }
\end{aligned}
$$

$$
\begin{array}{cc}
x, \pi^{-1} s \longrightarrow \mathbb{P}^{\prime} i s & \text { topologically locally trial } \\
\text { fibers } e_{t o p}=0 & \text { (Ehroshman) }
\end{array}
$$

$$
e_{t o p}(x)=e_{\text {top }}\left(x, \pi^{-1} s\right)+\sum_{J \in S} e\left(x_{s}\right)
$$

$$
=0+\sum_{i \in s} e\left(x_{s}\right)=24
$$

If x_{s} are reduced \& irreducible $\Rightarrow p_{a}\left(x_{s}\right)=1$.

$$
x_{s} \quad \Rightarrow e\left(x_{s}\right)=1
$$

Conduolon 24 singular there.

Aside Adjunction formula for singular curves

C smooth $\Rightarrow 2 g-2=c^{2}$. adjunction

$$
g=1+\frac{c^{2}}{2}
$$

If $c c x$ reduced \& irreducible

$$
\begin{gathered}
p_{a}(c)=\operatorname{dim} h^{\prime}\left(c, O_{c}\right)=\text { arithmetic genus. } \\
\Rightarrow p_{a}(c)=1+\frac{c^{2}}{2} \geq 0
\end{gathered}
$$

Proof Woe the exact reguence:

$$
\begin{aligned}
& 0 \longrightarrow O_{x}(-c) \longrightarrow O_{x} \longrightarrow O_{c} \rightarrow 0 \\
& x\left(O_{c}\right)=x\left(O_{x}\right)-x\left(O_{x}(-c)\right) \\
&=x\left(O_{x}\right)-\left[x\left(O_{x}\right)+\frac{(-c)(-c)}{2}\right] \\
&=-\frac{c^{2}}{2}=h^{0}\left(c, O_{c}\right)-b^{\prime}\left(c, O_{c}\right)=1-\rho_{a}(c)
\end{aligned}
$$

$$
\begin{aligned}
& c \text { reduced, } \tilde{c} \xrightarrow{\nu} c \text { normalization } \\
& g(c)=g(\tilde{c}) \quad g \text { oom-tric genus } \\
& \Longrightarrow p_{a}(c)=g(c)+\delta . \\
& \delta=\text { length } \quad \nu_{*} O_{\tilde{c}} / G_{c}=\text { contibution fom singularitios }
\end{aligned}
$$

Conclurcon
[1) $C^{2}=$ even
[I] $c^{2} \geq-2$.

If equality then $c^{2}=-2 \Rightarrow p_{a}=1+\frac{c^{2}}{2}=0$

$$
\begin{aligned}
& \Rightarrow g=0 \text { \& } \delta=0 \\
& \Rightarrow \tilde{c} \cong \mathbb{P}^{\prime} \text { \& no singularities } \\
& \Rightarrow C \cong \mathbb{P}^{\prime}
\end{aligned}
$$

In. A thorougher study of the cohomology
(2) study of the lattice $H^{2}(x, \mathbb{Z})$
(1) cup product in $H^{2}(x, \mathbb{R})$
(3) Hodge decomposition of $H^{2}(x, \sigma)$.

S1. Over R
Signature
$\operatorname{dim}_{\mathbb{R}} x=4 b$ compact manifold
U: $H^{2 k}(x, \mathbb{R}) \times H^{2 k}(x, \mathbb{R}) \longrightarrow \mathbb{R}$ perfot pairing
type $\left(b^{+}, b^{-}\right)$
signature $=6^{+}-b^{-}$.

If x is a complex surface, $k=1$

$$
6^{+}-6^{-}=\frac{1}{3}\left(k_{x}^{2}-2 e(x)\right)
$$

Aside Them - Hirz=bruch theorem

$$
b^{+}-b^{-}=\int_{x} \mathcal{L}^{L \text {-genus }}(T x)^{L}
$$

This is an index theorem for $d^{\prime}+d^{*}: \Lambda^{+} \longrightarrow \Lambda^{-}$

Compare with

$$
x\left(x, O_{x}\right)=\int_{x} t d(T x)
$$

This is an index theorem for the $\bar{\partial}+\bar{\partial}^{*}: \Lambda^{0,2 k} \longrightarrow \Lambda^{0,2 k+1}$

Gauss - Bonnet

$$
e_{t o p}(x)=\int_{x} c(T x)
$$

This is an index the for $d+d^{*}: \Lambda^{=v} \rightarrow \Lambda^{\text {odd }}$.

Total Pontryagin class V real rector bundle
(L) $p(v)=1+p_{1}(v)+p_{2}(v)+\ldots$

$$
=\prod_{i}\left(1+x_{i}\right)
$$

(G) $\rho(v)=\prod_{j}\left(1+r_{j}^{2}\right) ⿷ r_{j}$ chern rooto of V^{Φ}.

एc] $\mathcal{L}(v)=\prod_{i} \frac{\sqrt{x_{i}}}{\tanh \sqrt{x_{i}}}=\prod_{i}\left(1+\frac{x_{i}}{3}-\frac{x_{i}^{2}}{45}+\cdots\right)$

$$
=1+\frac{1}{3} p_{1}(v)+\frac{1}{45}\left(7 p_{2}(v)-p_{1}(v)^{2}\right)+\ldots
$$

IN $p_{1}(T x)=\frac{1}{3}\left(c_{1}^{2}-2 c_{2}\right)$ if x comptex surface.

Example $\quad X=$ K3 surface $\quad k=1$.

$$
\begin{aligned}
& b^{+}+b^{-}=\operatorname{dim} H^{2 h}(x)=\operatorname{dim} H^{2}(x)=22 . \\
& 6^{+}-b^{-}=-16 \\
\Rightarrow & b^{+}=3 \quad, b^{-}=19
\end{aligned}
$$

Exercise

If we carry out these arguments for any surface

$$
\text { - } b, \text { even } \Rightarrow b^{+}=2 \mathrm{pg}+1
$$

-b, odd $\Rightarrow b^{+}=2 \mathrm{pg}($ not Kähler)
$P_{g}=\operatorname{dim} H^{0}\left(\Omega_{x}^{2}\right) \quad$ This shows $p g$ is determined

In our case $p g=1$. by the topology.
$\int 2$. Over \mathbb{Z}

$$
\Lambda=H^{2}(x, Z)=\text { lattice. }
$$

- 1 free \mathbb{Z}-module
- symmetric bilinear form

$$
\Lambda_{\mathbb{R}}=\Lambda \otimes \mathbb{R} \text { signature }\left(6^{+}, 6^{-}\right)=(3,19)
$$

Remark $\sqrt{1} \Lambda$ is evan $x^{2} \equiv 0 \bmod 2 \forall x \in \Lambda$.
[6 Λ unimodular $\Lambda \cong \Lambda^{v}=\operatorname{Hom}(\Lambda, \mathbb{Z})$.

$$
\wedge \times \wedge \longrightarrow \mathbb{Z} . \quad \text { Poincare' duality. }
$$

$$
\begin{aligned}
& \text { Example } \bar{l} N=U=\text { byperbolic lathice } \\
& \Lambda=\mathbb{Z} e+\mathbb{Z} f, e^{2}=0, f^{2}=0, \text { e. } f=1 \\
& \Lambda=\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

eren: $Q(a r+b f)=(a r+b f)^{2}$

$$
\begin{aligned}
& =a^{2} e^{2}+b^{e} f^{2}+2 a b e f \\
& =2 a b=\text { evcn. }
\end{aligned}
$$

(11) E lattice \rightarrow signature $(8,0)$.

$$
\begin{aligned}
& \Lambda=\left\{\left(x_{1} \ldots x_{8}\right) \in \mathbb{Z}^{8} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{8}: \sum_{i=1}^{8} x_{i} \equiv 0 \bmod 2\right\} \\
& - \text { rectors of Length } 2:-\quad \pm 1 \Omega 2 \text {-hies } \\
& -\quad \pm 1 / 2 \Omega 8 \text { hies }
\end{aligned}
$$

- basis

- compute the intersection matrix if you wish.
\& chock . urimodular.
- signature $(8,0)$

Glassification of even \& unimodular lathices
(Serre, A course in Arithmatic)

$$
\text { - sumb of } \pm E_{8}, U \text {. }
$$

In our case

$$
\Lambda_{k 3}=\left(-E_{8}\right)+\left(-E_{8}\right)+u+u+u
$$

Friedman The lathice $H^{2}(x, \mathbb{Z})$ determines simply conneoted X up to homeomorphiom.

$$
\text { T.d. (rank, signature, parity) } n>
$$

S3. Over ब

Zlodge decompoiston, $H^{p, q}=(p, q)$-forms.
(1) $H^{2}(x, \sigma)=H^{2,0}+H^{1,1}+H^{0,2}$.
(2) $\overline{H^{2,0}}=H^{0,2} \quad \quad h^{1,2}=\operatorname{dim} H^{1,2}$

For us $h^{0,2}=\hbar^{2,0}=2$ because $h^{2,0}=\operatorname{dim} H^{0}\left(\Omega^{2}\right)$

$$
=\operatorname{dim} H^{0}(0)
$$

$$
\Rightarrow \quad h^{\prime \prime}=20
$$

$$
=1 .
$$

$$
H_{R}^{\prime \prime \prime}=H^{\prime \prime \prime} \cap H^{2}(x, \mathbb{R}) \Rightarrow H^{\prime \prime \prime}=H_{\mathbb{R}}^{\prime \prime \prime} \otimes_{\mathbb{R}} \mathbb{C}
$$

$N s(x)=H^{\prime \prime \prime}$ n $H^{2}(x, Z)$ Neron Seveni Lattice

Aoide
(1) First Chern class

$$
\begin{aligned}
P_{i c}(x) & \xrightarrow{c} H^{2}(x, z) \xrightarrow{j} H^{2}(x, c) \\
z & \longrightarrow e,(z)
\end{aligned}
$$

(2) exponential seguence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_{x} \longrightarrow \mathcal{O}_{x}^{*} \longrightarrow 1 \text { gives }
$$

$$
\begin{aligned}
& \text { // } 0 \quad \operatorname{Pic}(x) \\
& H^{\prime}\left(x, O_{x}\right) \longrightarrow H^{\prime}\left(x, O_{x}^{*}\right) \xrightarrow{c_{1}} H^{2}(x, Z) \\
& \downarrow \downarrow^{\infty} \quad \sum_{j} \\
& \text { Lefochetz NS } \longleftrightarrow H^{2}(x, \mathbb{C}) \\
& \text { thm on (1,1) olasses }
\end{aligned}
$$

ensures c, suryective.
(3) In our cave $H^{\prime}\left(x, O_{x}\right)=0 \Rightarrow c_{1}$ ingective (for K3s)

$$
\begin{aligned}
\Longrightarrow \quad P_{i c}(x) & \cong N S(x) \text { \& } \\
c_{1}: P_{i c}(x) & \longrightarrow H^{\prime \prime} \text { is ingretive. }
\end{aligned}
$$

For kB surfaces

We investigate the signature of the intersection form on $H_{R}^{\prime \prime}$.

Lot ω be the symplectic form $H^{\circ}\left(x, \Omega_{x}^{2}\right) \cong \mathbb{C}$.

$$
\begin{aligned}
& \left(H^{2,0}+H^{0,2}\right)_{R} \text { spanned by } \omega+\bar{\omega} \alpha \dot{0}(\omega-\bar{\omega}) \\
& \begin{aligned}
(\omega+\bar{\omega})^{\wedge 2} & =2 \omega \wedge \bar{\omega}>0 \quad \text { since } \omega \wedge \omega=\bar{\omega} \wedge \bar{\omega}=0 . \\
\left(\dot{i}(\omega-\bar{\omega})^{\wedge 2}\right. & =-(\omega-\bar{\omega}) \wedge(\omega-\bar{\omega}) . \\
& =\alpha \omega \wedge \bar{\omega} .>0
\end{aligned}
\end{aligned}
$$

$$
H^{2}(x, \sigma)=\left(H^{2,0}+H^{0,2}\right)+H^{1,1} \swarrow \text { signature }(3,19)
$$

Conclusion $H_{R}^{\prime, 1}$ has signature $(1,19)$

Consequences

Flodge Index Theorem I.

$$
\text { If } \Delta^{2}>0, \Delta . E=0 \text { then } E^{2} \leq 0 \text {. }
$$

Proof $Z=t \quad V$ be the subspace spanned by D \& E

$$
\text { in } H_{R}^{\prime \prime} \text {. }
$$

If $\operatorname{dim} v=2$ since $D^{2}>0 \Rightarrow v$ has signature (11)
Since $D . E=0 \& D^{2}>0 \Rightarrow E^{2}<0$.

$$
\begin{aligned}
& \text { If } \operatorname{dim} V=1 \text { then } D=\mu E \text { or } E=0 \text {. If } \\
& D=\mu E \Rightarrow D^{2}=D \cdot \Delta=\mu D \cdot E=0 \text {. false. Thus } \\
& E=0 \Rightarrow E^{2}=0 .
\end{aligned}
$$

Remark Equality happens iff $E=0$ in $H_{\text {"́ }}$

$$
\Longrightarrow E \equiv 0 \text { since } P_{i c} \longleftrightarrow H_{R}^{\prime \prime} \text { ingeetire. }
$$

for kos

$$
\begin{aligned}
& \text { Hodge Index Theorem II. } \\
& \text { If } \Delta_{1}^{2}>0 \text { then } D_{1}^{2} \cdot \Delta_{2}^{2} \leq\left(D_{1} \cdot D_{2}\right)^{2} \text {. }
\end{aligned}
$$

Proof Lot

$$
D=\Delta_{1}^{2} \cdot \Delta_{2}-\left(\Delta_{1} \cdot \Delta_{2}\right) \cdot D_{1}
$$

Observe that

$$
\Delta . \Delta_{1}=\Delta_{1}^{2} \cdot\left(D_{1} \cdot D_{2}\right)-\left(D_{1} \cdot \Delta_{2}\right) \Delta_{1}^{2}=0 .
$$

By Hodge I. \Rightarrow

$$
\Delta^{2} \leq 0 \Rightarrow \Delta_{1}^{2} \cdot \Delta_{2}^{2} \leq\left(D_{1} \cdot D_{2}\right)^{2} .
$$

$$
\begin{aligned}
& \text { Equality occurs iff } D_{2}=\mu D_{1} \text {. in } H_{R}^{\prime \prime} \text { or equivalently (for a kB) } \\
& \text { iff } D_{2} \equiv \mu D_{1} \text {. }
\end{aligned}
$$

Hodge Index Theorem III. (x, H) K3 surface, H ample.

$$
\mathcal{P}=\left\{\alpha: \alpha^{2}>0\right\} \longleftrightarrow H_{\mathbb{R}}^{\prime \prime}
$$

$\mathcal{P}=\mathcal{P}^{+} \cup\left(-\mathcal{P}^{+}\right)$where \mathcal{P}^{+}is the component that
contains 4.

In coordinates, we can take the intersection form

$$
\begin{array}{r}
x_{0}^{2}-x_{1}^{2} \ldots-x_{19}^{2}, H=(1,0, \ldots, 0) . \\
\alpha_{z}+\mathcal{P}^{+}=\left\{x_{0}>0: x_{0}^{2}>x_{1}^{2}+\ldots+x_{19}^{2}\right\} .
\end{array}
$$

$$
\text { G } x, y \in \rho^{+} \Rightarrow x \cdot y>0
$$

Explicitly,

$$
\begin{aligned}
x_{0} y_{0} & >\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{0 / 2}\left(y_{1}^{2}+\ldots+y_{n}^{2}\right)^{0 / 2} \\
& \geq x_{1} y_{1}+\ldots+x_{n} y_{n} .
\end{aligned}
$$

Thus if \mathcal{P}^{+}contains H, if contains all ample divisors
([4) $x, y \in \bar{\rho}^{+} \Rightarrow x \cdot y \geq 0$

If $x \neq 0, y \neq 0$ equality occurs when $y=\lambda \neq \& x^{2}=0$.

$$
\begin{gathered}
\text { Math } 2203-\text { Feature } 8 \\
\text { February 3, } 2021
\end{gathered}
$$

Last the

Cohomology of Kos

- $\Lambda=\left(-E_{8}\right)+\left(-E_{8}\right)+u+u+u$
- $H^{2}(x, \mathbb{Z}) \cong \Lambda$ as lattices
- $\Lambda_{\mathbb{R}}$ has signature $(3,19)$
Last hume

$$
\begin{aligned}
& \text { Lobachevsky Geometry } \\
& V_{R} \text { signature }(1, n) \\
& \mathcal{P}=\left\{x: x^{2}>0\right\}=\mathcal{P}^{+} \cup\left(-\mathcal{P}^{+}\right) . \\
& x, y \in \mathcal{P}^{+} \quad \Longrightarrow \quad x \cdot y>0 \text {. }
\end{aligned}
$$

Thus x, y are in the same component of $x, y>0$.

$$
\text { Model } \quad x_{0}^{2}-x_{1}^{2}-\ldots-x_{n}^{2}, \mathcal{P}^{+}=\left\{x_{0}>0, x^{2}>0\right\} \text {. }
$$

The inequality $x \cdot y>0$ if $x^{2}, y^{2}>0$ is Cauchy - Schwarz.

Convention

For $V_{\mathbb{R}}=\frac{H_{\mathbb{R}}^{\prime \prime}}{(1,19)}$ or $\underbrace{N S(x)_{\mathbb{R}}}_{(1, p-1)}$
$\mathcal{P}^{t}=$ component containing one call) ample claver.

Today

- discussion of ampormess on ks.
- onto moduli - approach by periods

Hopefully next time

- approach by Hilbert schemes
- discussion of ampleness II; Raider.
I. Discussion of Ample lime bundle

$$
\begin{aligned}
& P_{\text {call }} \mathcal{Z} \longrightarrow X \text { ample } \Leftrightarrow \mathcal{L}^{2}>0 \text { and } \mathcal{Z} \text {. }>0 \text { } \forall \text { pred. } \\
& \text { (Nakai-Moishezon, H.V. 1. 10). } \\
& \mathcal{L} \rightarrow X \quad n=f \Longleftrightarrow \mathcal{Z} \Longrightarrow c \geq 0 \forall c \operatorname{sircd} \Rightarrow \mathcal{L}^{2} \geq 0 \\
& \mathcal{Z} \longrightarrow x \text { big } \& n=f \Leftrightarrow \mathcal{Z} \cdot c \geq 0 \text { and } z^{2}>0
\end{aligned}
$$

Remark In all cases $\mathcal{L} \in \overline{\mathcal{P}^{t}}$

$$
\text { We only nerd to check } \mathcal{I} c \geq 0 \text { for curves } c, c \notin \bar{P}^{+}
$$

50 for those curves with $c^{2}<0$. We have seen in a previous lecture $c^{2} \geq-2$ \& c^{2} even. Thus $c^{2}=-2$ \& c irreducible $\Rightarrow c \cong \mathbb{P}$.

Thus in all the above inequalities we need $C \cong \mathbb{P}$ '
(For ampleness L. C >0 is satisfied since eg uality L.C=0 implies $L=\mu c \& c^{2}=0 \Rightarrow L^{2}=0$ false.)

$$
\begin{aligned}
& \text { Picard - Jefischetz } R_{2} f \text { flections } \\
& R^{2}=-2, \quad S_{R}: V_{\mathbb{R}} \longrightarrow V_{R} \\
& x \longrightarrow x+(x \cdot R) R
\end{aligned}
$$

Claims (1) $S_{R} x \cdot s_{R} y=x \cdot y \Rightarrow S_{R}$ isometry
(2) $\left(s_{R^{x}}\right)^{2}=x^{2}>0$
(3) $\quad S_{R} R=-R, \quad S_{R} /_{R}=11$.

(4) $S_{R}: P^{+} \longrightarrow P^{+}$

$$
\text { If } x \in \mathcal{P}^{t} \text {. we show } S_{R} x \in \mathcal{P}^{t} \text {. Not }\left(J_{R} x\right)^{2}=x^{2}>0
$$

$\Longrightarrow S_{R} x \in \mathbb{P}$ To see $S_{R} x$ and x are in the same component, we on $l y$ need to check

$$
S_{R} x . x>0 \Longleftrightarrow x . x+(x, R)(x, R)>0 \text { which is trice. }
$$

Lemma $\mathcal{Z}_{z} t D$ be a divisor with $\Delta^{2}>0$. There are
R_{1}, \ldots, R_{n} such that
$\pm S_{R_{1}} S_{R_{2}} \ldots S_{R_{n}} D$ is $n=f$. It is furthermore ampto
if $\nexists R^{2}=-2$ with $D . R=0$.

Proof Not $D \in \mathcal{P}^{+}$or $-D \in \mathcal{P}^{+}$. \mathcal{L} 价 H ample

Assume w LOG $\quad \Delta \in \mathcal{P}^{+}$Then $D_{-} H>0$.

If $D \quad n=f$, we win. Otherwise $\exists R$, ir red uarble, $D . R,<0$.

By the above remark $R_{1}^{2}=-2, R_{1} \cong \mathbb{P}!\alpha_{E} t O_{1}=S_{R_{1}} D_{\text {. }}$.

Not $D_{1} \cdot H=D . H+\left(D . R_{1}\right)\left(H . R_{1}\right)<\Delta . H$. Also
$D, \in \mathcal{P}^{+}$by IV on previous page $\Rightarrow D_{1} . H>0$.
If $D, n=f$, we win. If not we continue. to reflect across a new curve R_{2}. The process must stop since
$0<D, H<\Delta . H$ decreases. At the end. we obtain a nef divisor.
R. $S_{R_{0}} \ldots S_{R_{n}} D=0 \Leftrightarrow D . \delta=0$ for

The divisor is ample unless $\Rightarrow R^{2}=-2$,

$$
\delta=S_{R_{1}} \ldots S_{R_{n}} R \Rightarrow \delta^{2}=-2 \text {. This complete o the proof. }
$$

Check: the proof also works for $D^{2}=0$.

The discussion can be carried out abstractly
r lattice, $V_{\mathbb{R}}=r \otimes \mathbb{R}$ signature $(1, n), \mathcal{P}, \mathcal{P}^{+}$
e.g. $\Gamma=\Lambda_{k s}$, NS (x) or other lattices (needed later)

$$
\Delta=\left\{\delta \in r: \quad \delta^{2}=-2\right\}=\Delta^{+} \cup\left(-\Delta^{*}\right) \text {. }
$$

$s_{\delta}: V_{\mathbb{R}} \longrightarrow V_{\mathbb{R}}, \quad s_{\delta}(x)=x+(x . \delta) \delta$
${ }_{5}$ proerves \mathcal{P}^{f}.

$$
W \leq 0^{+}(r) \text { gonorated by } S_{\delta} \text {. Weyl group }
$$

Claims (1) W acts on P^{t} preserving $\bigcup_{\delta \in \Delta} \delta^{\perp}$
(2) W acts on \mathcal{P}^{+}properly discontinuously
(3) $\bigcup_{\delta \in \Delta} \delta^{\perp}$ is olosed in \mathcal{P}^{+}
$\mathcal{J}^{t} 1 \bigcup_{\delta \in \Delta} \delta^{\perp}$ is open. Conneoted components are chambers
(4) W acts on chambers transitively

In a dalition,
(5) chamber can be taken as fund amental
domain for the action of W (Vimberg, 1971).

Recall $G \curvearrowright M$ fundamental domain u

For instance

$$
G=p s L_{2}(\mathbb{Z}) \quad 2 m=j^{+}
$$

fundamental domain u bounded by

Remark $\quad r=N s(x)$ the above (5) shows

$$
A_{\operatorname{mpp}}(x)_{\mathbb{R}} \longleftrightarrow N S(x)_{\mathbb{R}}
$$

is fundamental domain for the action of W on \mathcal{P}_{x}^{+}

Compare this with the Lemma.

Subtle Point A-prioni in the definition of W we don't ask for δ irreducible. $\dot{\sigma}$.g. when $\Gamma=N S(x), \delta$ may mot be irreg. rational curve. This is mot an issue as it can be shown W is generated by $S_{\left[p^{\prime}\right]} . \mathbb{P}^{\prime} \subset x$.

For instance, $\delta=R_{1}+R_{2}, \quad R_{1}^{2}=R_{2}^{2}=-2, \quad R_{1} \cdot R_{2}=1 \Rightarrow \delta^{2}=-2$.

$$
\Rightarrow S_{\delta}=S_{R_{1}} S_{R_{2}} S_{R_{1}}
$$

Proof
(1) W acts on \mathcal{P}^{+}preserving $\bigcup_{\delta \in \Delta} \delta^{\perp}$,

$$
\text { Indeed, } \forall s_{\eta} \in W: s_{\eta}: \delta^{2} \rightarrow s_{\eta}(\delta)^{2}, \quad s,(\delta) \in \Delta
$$

Check: $s_{y}(\delta)^{2}=\delta^{2}=-2$
(2) W acts on \mathcal{P}^{+}properly discontinuously

Indeed $0^{+}(1, n)$ actor transitively on P^{+}\& $5 \operatorname{tab} \cong(1,0, \ldots 0)$

$$
(1,0, \ldots 0)
$$

Fast (Topology).
compact

$$
\Gamma \leq G \text { discrete, } H \leq G G^{K} \text { then }
$$

$\Gamma \curvearrowright 6 / H$ is properly discontinuous.
(3) $\bigcup_{\delta \in \Delta} \delta^{\perp}$ is olosed in P^{+}

Claim $W \curvearrowright \mathcal{P}^{+}$properly discontinuously, $s \subseteq W$ then

$$
\mathcal{F}=\bigcup_{J \in S}\{x: s x=x\} \longleftrightarrow \mathcal{P}^{+} \text {is coed. }
$$

Take $\delta=\left\{s_{\delta}\right\}: \mathcal{F}=\bigcup_{\delta \in \Delta} \delta^{\perp}$ to conclude.

Proof $\mathcal{L e t}^{\prime} y \in p^{+} \backslash F, \quad w_{y}=$ stabilizer of y.

$$
\Longrightarrow \quad w_{y} \cap s=\phi \text { by definition of } F \text {. }
$$

Since w acts properly dis continuously,

$$
\begin{aligned}
& \Rightarrow \quad \exists u \cap u=\phi \quad \forall s \in S \text { since } s \subseteq w \backslash w_{y} \\
& \Rightarrow u \subseteq \mathcal{P}^{+}, \mathcal{F} \Rightarrow \mathcal{P}^{+} \mid \mathcal{F} \text { open } \Rightarrow \text { soloed. }
\end{aligned}
$$

(4) W acts on chambers transitively

WIS $x, y \in \mathcal{P}^{+} \backslash \bigcup_{\delta} \delta^{\perp} \quad \exists w \in W$
$w x$ and y are in the same chamber

$$
\Longleftrightarrow \quad\langle w \times . \delta\rangle\langle y . \delta\rangle \geq 0 \quad \forall \delta^{2}=-2
$$

$$
\text { Define } f: W x \longrightarrow \mathbb{R}, \quad w x \rightarrow\langle x, y\rangle \text {. }
$$

$W=$ claim f has a minimum. at $w_{0} x$. Then $\forall w$

$$
\begin{aligned}
&\langle w x, y\rangle \geq\left\langle w_{0} x, y\right\rangle \\
& \text { Let } \quad \delta^{2}=-2, w=s_{\delta} w_{0} . \text { Then } \\
&\langle w x, y\rangle-\left\langle w_{0} x, y\right\rangle \geq 0 \\
& \Leftrightarrow\left\langle s_{\delta} w_{0} x, y\right\rangle-\left\langle w_{0} x, y\right\rangle \geq 0 \\
& \Leftrightarrow\left\langle w_{0} x, \delta\right\rangle\langle y, \delta\rangle \geq 0 \text { as needed. }
\end{aligned}
$$

Why is minimum achieved? $\forall x, y, a$

$$
k_{a}=\{z:\langle z, y\rangle \leq a,|z|=|x|\}=\text { compact. (check) }
$$

Since $w \longrightarrow \mathcal{P}^{+}, w \longrightarrow w x$ proper (action is properly discount)

$$
W_{*} n K_{a}=\text { finite } \forall a
$$

$$
\Rightarrow\{w \times:\langle w x, y\rangle \leq a\} \text { finite }
$$

$\Rightarrow f$ achieves minimum
II. Onto Moduli
(1) marked K3 surfaces \& periods
(2) marked polarized ks surfaces \& periods
(3) a pproach via Hilbert schemes.
(1) Marked $k 3$ surfaces $\Lambda=\Lambda_{k 3}=\operatorname{signature}(3,19)$. $=k 3$ lattice

A marking of x is an 150 metry

$$
\Phi: H^{2}(x, \mathbb{Z}) \longrightarrow \Lambda
$$

It induces $\Phi^{\sigma}: H^{2}(x, \sigma) \longrightarrow \lambda_{\sigma}$
If $\omega \in H^{2,0}(x)$ is the sympleatic form, $t=t$

$$
x=\Phi^{a}(\omega) \in \Lambda_{c} \text {. well- defined up to scalars. }
$$

Period do main

$$
\begin{aligned}
\underset{D}{D} & =\left\{x \in \mathbb{R} \wedge_{c}: x^{2}=0, x \cdot \bar{x}>0\right\} \\
& =\text { open in a quadric in } \mathbb{P}^{21}
\end{aligned}
$$

$$
o(\Lambda) \curvearrowright m=\{(x, \Phi): \text { marked } k 3\}
$$

$$
g \cdot(x, \Phi)=(x, g \circ \Phi)
$$

$$
\begin{aligned}
& m=\{(x, \Phi) \text { markod kus J sot } \\
& \text { Priod map Per: } m \longrightarrow D \\
& (x, \Phi) \longrightarrow \Phi\left(H^{20}(x)\right) .
\end{aligned}
$$

We can consider r lattice, $\Gamma_{\mathbb{R}}$ has signature $\left(n_{t}, n_{-}\right)$

$$
{n^{+}}^{+} \text {or } n^{+}=3
$$

The case $n^{t}=2$ is needed for polarized RUs.
The case $n^{t}=3$ cormsponds to the ks lattice.

$$
\text { Define } D=\left\{x \in \mathbb{P} r_{\sigma}: x^{2}=0, x_{-\bar{x}}>0\right\} \text {. }
$$

Grassmannian realization

$$
\begin{aligned}
& G+\left(2, r_{\mathbb{R}}\right)=\left\{P \subseteq r_{R}, \operatorname{dim} P=2, C, 1 / P>0\right\} \\
& G^{+, 0}\left(2, r_{R}\right)=\{(P, 0): 0 \text { orientation of } P\} \\
& G^{+1,0}\left(2, r_{\mathbb{R}}\right) \longrightarrow G^{+}\left(2, r_{\mathbb{R}}\right) \text { double cover }
\end{aligned}
$$

Lemma (next time)

$$
D \cong G^{+.0}\left(2, r_{\pi}\right) \cong O\left(n_{+}, n_{-}\right) / \operatorname{so(2)} \times O\left(n_{+}-2, n_{-}\right)
$$

If $n_{+}>2, H=s 0(2) \times 0\left(n_{+}-2, n_{-}\right)$is not compact.
The action of $O(\Gamma) \curvearrowright G / H$ is mot expected to be
properly discontinuous. When $n_{+}=2, H=$ compact however.

$$
\begin{gathered}
\text { Math } 2203 \text { - Zeoture } 9 \\
\text { February 5, } 2021
\end{gathered}
$$

Last the $=$

$$
\text { - } \Lambda=k 3 \text { lattice }=\left(-E_{s}\right)+\left(-E_{s}\right)+U+U+U
$$

- marked ks surface (x, Φ)

$$
\Phi: H^{2}(x, \mathbb{Z}) \sim \wedge
$$

- Period Per $(x, \Phi)=x \in \mathbb{Z} \lambda_{\sigma}$ when $H^{2,0} c H^{2}(x, \sigma)$
induces $\quad x=\Phi^{C}\left(H^{2,0}\right)=$ line in Λ_{σ}
- Period domain

$$
\mathcal{D}=\left\{x \in \mathbb{P} \wedge_{c}: x^{2}=0 . x \cdot \bar{x}>0\right\} .
$$

- Period map

$$
\begin{gathered}
m=\{\text { marked } K 3 \text { surfaces }(x, \Phi)\} / \sim \text { notion of } \\
\text { Per: } m \longrightarrow D
\end{gathered}
$$

- o (1) auto on both m \& D :

$$
\begin{aligned}
& g \cdot(x, \Phi)=(x, g \circ \Phi) \\
& g \cdot x \in \infty
\end{aligned}
$$

Period map Per: $m \longrightarrow D$.

Fact the period map is surjeative. \& furthermore
Pe: $O(n) \backslash m \sim O(n) \backslash D$.

Weak Tornlli Theorem

$$
x \cong x^{\prime} \Leftrightarrow \exists \psi: H^{2}(x, z) \longrightarrow H^{2}\left(x^{\prime}, z\right) .
$$

preserver intersection form a $\psi_{\text {a }}$ preserves Hodge decomposition \uparrow
Terminology Hodge isometry

To see injectuity of Per from Weak Torlli:

$$
\begin{aligned}
& \operatorname{Pr}(x, \phi)=\operatorname{Prr}\left(x^{\prime}, \phi^{\prime}\right) \Leftrightarrow \quad H^{2}(x, z) \xrightarrow{\phi} \wedge \\
& \int^{\psi} \psi \phi^{\prime} \\
& H^{2}\left(x^{\prime}, z\right)
\end{aligned}
$$

Let $\psi=\Phi^{\prime-\theta} \cdot \Phi$. This is a Hodge isometry. Then

$$
x \cong x^{\prime} \text {. Identify } x=x^{\prime}, \phi^{\prime} \& \phi \text { differ by an alt. in or). }
$$

Note $O(\lambda) \backslash D \cong O(\lambda) \backslash m=$ moduli space of Ks." (no markings).

What kind of object do we expeot

$$
O(A) \backslash D+b_{c} ?
$$

We can consider L lattice, $L_{\mathbb{R}}$ has signature (n_{t}, n_{-})

$$
\dot{n}^{+}=2 \text { or } n^{+}=3
$$

$$
D=\operatorname{fine} \quad D=\left\{x \in \mathbb{P} L_{\sigma}: x^{2}=0, x \cdot \bar{x}>0\right\}
$$

Grassmannian realization

$$
\begin{aligned}
& \left.G^{+}\left(2, L_{\mathbb{R}}\right)=\left\{P \subseteq L_{\mathbb{R}}, \operatorname{dimp}=2, C,\right) /_{P}>0\right\} \\
& G^{+, 0}\left(2, L_{\mathbb{R}}\right)=\{(P, 0): 0 \text { orientation of } P\} \\
& G^{+0}\left(2, L_{\mathbb{R}}\right) \longrightarrow G^{+}\left(2, L_{\mathbb{R}}\right) \text { double cover }
\end{aligned}
$$

Claim

$$
D \cong \sigma^{+0}\left(2, L_{R}\right) \cong O\left(n_{+}, n_{-}\right) / \operatorname{so(2)} \times O\left(n_{+}-2, n_{-}\right)
$$

Proof \{e,f\} ~ o r i e n t e d ~

$$
\{\text { basis for } P
$$

(1) $x \in D, *=E+i f \Rightarrow P=\mathbb{R} E+\mathbb{R} f=$ onented plane

$$
\begin{aligned}
& x^{2}=0 \Rightarrow e^{2}-f^{2}=0 \& r \cdot f=0 \\
& x \cdot \bar{x}>0 \Rightarrow r^{2}+f^{2}>0 \Rightarrow e^{2}=f^{2}>0
\end{aligned} \Rightarrow(,) / p>0 .
$$

This is we $11-d=f i n e d$ after scaling $x M \lambda *$.
(2) $G^{+, 0}\left(2, L_{\mathbb{R}}\right)$ admits an action of $O\left(n_{+}, n_{-}\right)$

The action is transitive. $\mathcal{L}_{2} t P=\left\langle\nu_{1}, \nu_{2}\right\rangle$ be an onented
plane. the stabilizer of P is

$$
\operatorname{so(2)} \times 0\left(\left\langle v_{1}, v_{2}\right\rangle^{\perp}\right)=\operatorname{so}(2) \times 0\left(n_{-}-2, n_{-}\right) .
$$

Conclusion
$n_{t}=3$ is not expected to yield a reasonable
structure on $O(L) \backslash D .=O(L) \backslash \mathrm{m}$. Indeed, recall
if $\sim_{\text {discrete }}^{\Gamma \curvearrowright} D=6 / H, H$ compact, the action is properly discont.
In our case $\sigma=O\left(n_{\neq}, n_{-}\right)$

$$
H=\operatorname{so}(2) \times 0\left(n_{+}-2, n_{-}\right) \text {not compact }
$$

$n_{+}=2$ is butter behaved. H = compact

We can construct an analytic structure on m
by gluing together deformation spaces of $k S s$.
x
$\downarrow \pi \quad$ universal deformation space. of a K3 x.
$D=f(x)$

It turns out $D=f(x)$ is smooth, 20 dim. $\quad h^{\prime}\left(x, T_{x}\right)=20$

Howler, m is not Flausdorff.

Aliyah (1958)
$7 X^{+}, \#^{-}$
$L_{\Delta}^{+} p^{-}$families of $k 3$ surfaces, isomorphic over
Δ
$\Delta \backslash\{0\}$ but not as families over Δ.
(1) fix markings of the families $*^{+} \xrightarrow{\rho_{+}} \Delta, *^{-} \xrightarrow{p_{-}} \Delta=-g$.
(2) Since $X^{+} / \Delta \backslash\{0\} \cong X^{-} / \Delta \backslash\{0\} \Rightarrow \phi^{ \pm}: \Delta \rightarrow m$ agree on $\Delta \backslash\{0\}$.
(3) m flaws doff $\rightarrow \phi^{+}=\phi^{-}$on $\Delta \Rightarrow X^{+} \cong x^{-}$ as Δ-families. In fact the two markings differ by Picard Z efschetz reflection.

Idea of the construction

$$
\begin{aligned}
& x=\left\{x^{2}\left(x^{2}-2\right)+y^{2}\left(y^{2}-2\right)+z^{2}\left(z^{2}-2\right)=2 t^{2}\right\} \hookrightarrow \pi^{3} \times \Delta \\
& \downarrow \\
& \Delta
\end{aligned}
$$

- x_{t} is $k 3$ for $t \neq 0$
- $X_{0} X_{0}$ singular at $p=(0,0,0)$.
- Resolve angularities! We can do 50 in several ways yielding different families of K3S, $\mathcal{K}^{ \pm}$

The exceptional alvisor $E \cong \mathbb{\mathbb { P }} C_{x, p} \cong \mathbb{P}\left(x^{2}+y^{2}+z^{2}+t^{2}=0\right) \cong \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$.

Locally, the picture is:

$$
\begin{aligned}
& x=\{x y-z w=0\} \leq c^{4} \\
& \Delta^{+}=\{x=z=0\} \longleftrightarrow x \text { not Cartier } \\
& \Delta^{-}=\{x=\boldsymbol{w}=0\} \longleftrightarrow x \text { not Cartier } \\
& x^{+}=B \Delta_{\Delta+} x \\
& x^{-}=B D_{D^{-}} x \\
& \tilde{X}=B 1_{0} \mathscr{X}
\end{aligned}
$$

$X^{+} \cong X^{-}$but $X^{+} X^{-}$are not isomorphic as X-schemes.
(1) $\Delta^{ \pm}$not Cartier on X, but Cartier on X.
(2) $x^{ \pm}$are smooth. $x^{+}=B \Delta_{\Delta^{+}}^{x} \quad \Delta^{t}=(x=z=0)$.

Why: Equations $X^{+} \longrightarrow X \times \mathbb{R}^{\prime}$ closure of Graph $\frac{x}{2}=\frac{w}{y} \cdot=\frac{X}{Z}$.
The equations of x^{+}in $x \times p^{\prime}$ are $[x: Z]$ coordinates in ip!

$$
x y=z w, x Z=z X, w Z=y X
$$

In the chart $X=1: Z=* Z, y=w Z$ no the coordinates are
$(x, w, Z) \longrightarrow$ shows smoothness.
(3) $c^{ \pm}=$promages of 0 in $x^{ \pm}$are smooth $\cong \mathbb{P}$.

$$
\text { in coordinaks, } \mathrm{c}^{+} \text {corresponds to }(0,0, Z) \text {. }
$$

(4) the exceptional divisor $E \cong \mathbb{P}\left(c_{x, 0}\right) \cong \pi^{\prime} \times \mathbb{D}^{\prime}$.

The maps $\tilde{\not} \rightarrow X^{ \pm}$contract the two rulings

$$
\text { (5) } x^{+} \cong x^{-} \text {but } x^{+} \neq x^{-} \text {as } x_{-} \text {vanities }
$$

Discussion of the case $n_{+}=2$.

$$
D=\left\{x \in \mathbb{R} L_{\sigma}: x^{2}=0, x \cdot \bar{x}>0\right\}, 2 \text { type }(2, n) \text {. }
$$

"Bounded symmetric domain of type IV".
What does this mean? Keep $\Delta \cong \mathcal{J}^{+}$in mind.

- $D \subseteq \sigma^{N}$ bounded is symmetric if
$\exists 5: D \longrightarrow D, s^{2}=\mathbb{H}, \exists$ an isolated fixed point. for 5 .
- D is irreducible if $\Delta \nexists \Delta_{1} \times \Delta_{2}$

4 classical \& 2 exceptional (E_{6}, E_{7})

Very rich history. Co notions with
complex analysis, differential geometry, repr. thy.

Speak to Ming Liao!

Marish- chandra

$$
\begin{aligned}
\text { Type }_{p, 2} & -A \rightarrow-A \text { involution } \\
& \left\{A \in \operatorname{Mat}_{I}(p, q): I_{2}-A^{t} \cdot \bar{A}>0\right\}
\end{aligned}
$$

Example $2=1$: unit ball in \mathbb{C} ?

$$
\begin{aligned}
& \text { Type In } \\
& \qquad\left\{A \in \operatorname{Mat}_{\epsilon}(n, n): I_{n}-A^{t} \cdot \bar{A}>0, A \text { skew }\right\}
\end{aligned}
$$

Type 咝

$$
\left\{A \in \operatorname{Mat}_{\Phi}(n, n): I_{n}-A^{t} \cdot \bar{A}>0: A \text { gym }\right\}
$$

$$
\begin{aligned}
& \text { Type }_{y} \bar{U}_{n}-Z_{i e} \text { sphere } \\
& \overline{I V}_{n}=\left\{z \in \mathbb{c}^{n}:|z|^{2}<\frac{1}{2}\left(1+|z \cdot z|^{2}\right)<1\right\}
\end{aligned}
$$

Example $n=1: \quad\{z \in \mathbb{C}:|z|<1\} . \cong \Delta$.

How does this connect with our picture

$$
D=\left\{x \in \mathbb{R} L_{\sigma}: x^{2}=0, x \cdot \bar{x}>0\right\} \cong G^{+0}\left(2, L_{\mathbb{R}}\right)
$$

$$
\left.x_{0}^{2}+x_{1}^{2}=2_{1}^{2}+\ldots+2_{n}^{2} \&\left|x_{0}\right|^{2}+\left|x_{0}\right|^{2}\right\rangle\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}
$$

Note $x_{0} / x_{1} \notin \mathbb{R} . \Rightarrow 2$ components $D^{ \pm}$

If $\operatorname{lm}\left(x_{0} / x_{1}\right)>0$, rescale so that $x_{0}-i x_{1}=1$ and write

$$
x_{0}+i x_{1}=\xi .
$$

Not $|\zeta|<1$ since ξ is the Coyly transform of $\frac{x_{0}}{x_{0}} \in J$.

Solving for $x_{0}, x_{\text {, }}$ and suboktuting we find

$$
\begin{aligned}
& \Rightarrow \xi=\sum z_{k}^{2}=2 \cdot z \& \frac{1+|\xi|^{2}}{2}>\sum\left|z_{k}\right|^{2} \\
& \Rightarrow D^{+} \cong \bar{v}_{n}=\left\{\sum | z _ { \pi } | ^ { 2 } \left\langle\frac{1}{2}\left(1+|z \cdot z|^{2}\right)\langle 1\} .\right.\right.
\end{aligned}
$$

A different realization

$$
\begin{aligned}
& L_{R}=u_{R}+W_{R}, \text { unyperbolic } \\
& \mathcal{F} L=\left\{z \in W_{C}:(\operatorname{lm} z)^{2}>0\right\}
\end{aligned}
$$

Claim $\mathcal{H L} \cong \infty$ via the isomorphism

$$
z \longrightarrow[1:-(z, z): \sqrt{2} z]
$$

Proof $T_{a k} x \in D . Z_{n}$ if a basis for $u: e^{2}=f^{2}=0$, eff $=1$.
Write $*=\alpha e+\beta f+z \sqrt{2}$.

$$
x^{2}=0 \Rightarrow \alpha \beta+z \cdot 2=0 . \quad(*)
$$

$x \cdot \bar{x}>0 \Rightarrow \alpha \bar{\beta}+\beta \bar{\alpha}+22 \cdot \bar{z}>0$. (**)
Thus $\alpha=1, \beta=-(2,2)$ satisfies (*). while $(* *)$ gives

$$
-\overline{(2 \cdot z)}-(2 \cdot 2)+22 \cdot \bar{z}>0 \Leftrightarrow z \cdot \bar{z}>R_{=}(2 \cdot z) \Leftrightarrow \operatorname{lm} z \cdot \ln z>0
$$

Example $n=1 \quad Z=\{\operatorname{lm} 2 \neq 0\}=\xi^{+} u\left(-\zeta^{+}\right)$.

Marked Polarized R3s
$(x, z), z^{2}=2 d, z$ ample a primitive
Def $F_{x} \quad l \in \Lambda^{\Lambda^{k 3}}, l^{2}=2 d, l$ primitive.
e.g. $\quad l=e+d f, e^{2}=f^{2}=0$, e. $f=1$.

Exercise (1) Any two such l^{\prime} ' differ by $O(\Lambda)$.
(2) $l^{1}=\left(-E_{8}\right)+\left(-E_{8}\right)+u+u+\frac{\underbrace{2-2 d\rangle}}{e-d f}$.

Define $\quad \Lambda_{d}=l!$ signature (2,19).

Def 11 a marked polarized $k 3$ consists in

$$
\begin{aligned}
\Phi: H^{2}(x, Z) & \longrightarrow \Lambda \\
G(Z) & \longrightarrow \ell .
\end{aligned}
$$

[ii] $O_{d}=o\left(\Lambda_{d}\right)$ acts on $m_{d}=\{(x, z, \Phi)\}$.

$$
g \circ(x, z, \phi)=(x, z, g \circ \phi) .
$$

(II) period domain

$$
\begin{aligned}
D_{d} & =\left\{x \in \mathbb{E} \Lambda_{a}: x^{2}=0, x \cdot \bar{x}>0, x \cdot l=0\right\} \\
& =\left\{x \in \mathbb{P} \Lambda_{d}^{a}: x^{2}=0, x \cdot \bar{x}>0\right\} .
\end{aligned}
$$

IV) period map is infective

$$
m_{d} \longrightarrow D_{d}, \quad \text { Per: } O_{d} \backslash m_{d} \longleftrightarrow 0_{d} \backslash D_{d}
$$

This is a consequence of Strong Toralli

$$
\text { If } \exists \psi: H^{2}(x, \mathbb{z}) \longrightarrow H^{2}\left(x^{\prime}, \mathbb{Z}\right), \psi(z)=z^{\prime} \text {. }
$$

then $(x, z) \cong\left(x^{\prime}, z^{\prime}\right)$

If $\operatorname{Per}(x, z, \phi)=\operatorname{Por}\left(x^{\prime}, z^{\prime}, \phi^{\prime}\right)$ then strong Torch Mi shows we may assume $\left(x, \chi^{\prime}\right)=\left(x^{\prime}, y^{\prime}\right)$ and ϕ, ϕ^{\prime} differ by an element in $0\left(\Lambda_{d}\right)$.

Theorm (Baily - Borel, Annals 1966)
$O \backslash D$ is a quasiprogeative variety

- a/so constructs compactification by adding "rational"
boundang components
- the compatification is singulor
- proof of progectuity uses automorphio forms

Remark The complement of the image of the period map

$$
\theta_{d} \mid m_{d}=\left(\theta_{d} \backslash D_{d}\right) \backslash \bigcup_{\delta \in \Delta\left(n_{d}\right)}
$$

Issue : Ampleness.
(1) "c". We show $\operatorname{Per}(x, \alpha, \phi) \notin \delta \perp$. Otherwise, $\exists \delta \in \wedge_{d}$ with $\delta . x=0, x=\operatorname{Por}(x, \mathscr{L}, \phi) .=\phi^{c}(\alpha)$. $\Leftrightarrow \delta \cdot l=0$ and $\delta \cdot x=0$. $\mathscr{L}_{2} f \quad R=\phi^{-1}(\delta)$. Then
R. $\mathcal{Z}=0$ and $R . \omega=0 . \Rightarrow R \perp H^{2,0}+H^{0,2} \Rightarrow$
$\Rightarrow R$ type $(1,1)$. Then by zefochety $(1,1)$ theorem,
R is a curve class. Since

$$
\begin{gathered}
R^{2}=-2 \Rightarrow \pm R \text { effective. In deed, } \\
h^{\circ} O(R)+\hbar^{0} O(-R)=h^{0} G(R)+h^{2} O(R) \geq \times O(R)=2+\frac{R^{2}}{2}=1
\end{gathered}
$$

$\Rightarrow \pm R$ is effective.

But Z. $R=0$ and $\pm R$-effective contradicts \mathcal{Z} ample.
(2) Conversely, if $* \in D_{d}$ then $*=\operatorname{Per}(x, \phi)$. by the surgectivity of the period map Per: $m \rightarrow D$.

Lot $\dot{\alpha}=\phi^{-1}(l)=$ integral $(3,1)$ alas, promitive $\alpha^{2}>0$.
$\exists S_{R_{1}} S_{R_{2}} \ldots S_{R_{n}} \mathcal{Z}$ nof \& in foot ample

To check ampleness we need to see that

$$
Z 0 f \delta=\phi(R) \Rightarrow l \cdot \delta=0 \Rightarrow \delta \in l^{L}
$$

and $x . \delta=0$ is automatic. vince $R . \omega=0$. Thus $x \in \delta^{\perp}$
for $\delta \in \ell^{\perp}=$ Nd which is not allowed. Therefore \mathcal{Z} is ample.

$$
\begin{gathered}
\text { Math } 206 \\
\text { February } 10,2021
\end{gathered}
$$

So. Jast the (summary)

- $m_{d}=\{(x, H, \Phi)\} / \sim=\operatorname{marked}$ polarized Kss
- $\Lambda_{d}=l^{l}, l \in \Lambda_{k 3}$ foed, promitive, $l^{2}=2 d$

$$
\text { - } D_{d}=\left\{x \in \mathbb{P} \Lambda_{d}: x^{2}=0, x \cdot \bar{x}>0\right\}=\text { period domain }
$$

- $O\left(n_{d}\right) \backslash m_{d}$

$$
O\left(n_{d}\right) \backslash D_{d}
$$

\& the complement is $O\left(n_{d}\right) \backslash \bigcup_{\delta^{2}=-2} \delta^{\perp}$ $\delta \in \wedge_{\mathrm{d}}$.

- $O\left(n_{d}\right) \backslash m_{d}=$ moduli of polarized k3s of degreezd.

$$
O\left(\wedge_{d}\right) \backslash D_{d}=\text { moduli of quasipolarized K3s. }
$$

Theorem (Baily - Borel, Annals 1966)
$O\left(n_{d}\right) \backslash D_{d}$ is a quasipropetive varicty

S1. The approach via Hilbert scheme (summary)

$$
(x, Z), Z \text { ample, } Z^{2}=2 d
$$

Crucial Claim

$$
\mathcal{L}^{\otimes 3} \text { very ample }
$$

The proof of the crucial dam is very interesting.

Construction

$$
\begin{aligned}
& |3 Z|: X \longrightarrow \mathbb{P} V, V \cong \pi^{T d+2} \\
& \operatorname{dim} v+1=h^{0}(3 Z)=Y(3 Z)=2+\frac{9}{2} \mathcal{Z}^{2}=2+9 d . \\
& P(t)=\gamma\left(O_{p v}(t) /_{x}\right)=2+g d t ?
\end{aligned}
$$

Let Hilb $=$ Hilb $_{\text {IV }}^{\text {E }}$ be the Hilbert scheme parametrizing

$$
X \hookrightarrow \mathbb{P} \vee \text { with } X\left(0_{x}(t)\right)=P(t) \text {. }
$$

Zet $H \longrightarrow$ Flilb $\times \mathbb{P}(v)$ be universal family

$$
\downarrow \pi
$$

$$
7: 1 / 6
$$

$Z=t \quad H^{0} \longleftrightarrow H$

$$
\begin{array}{ll}
\pi^{\circ} \quad \downarrow^{\pi} \quad \text { be the locus where } \\
7 / i / 6^{\circ} \longleftrightarrow & \text { lill }^{\circ}
\end{array}
$$

(1) \mathscr{X}_{h} is smooth, irreducible
(2) $h^{\prime}\left(x_{h}, \mathcal{O}_{x_{\hbar}}\right)=0$
(3) $\quad \omega_{x_{\hbar}} \cong 0_{x_{\hbar}}$
(4) $\left.p^{*} \mathcal{O}_{\mathbb{E V V}}(1)\right|_{x_{\hbar}} \cong \mathcal{Z}^{\otimes 3} /_{x_{\hbar}}$ for some $\mathcal{Z} \in \operatorname{Pic}_{\pi^{\circ}}\left(z^{0} / \mathcal{F}_{1} / 16^{\circ}\right)$
(5) z promitive
(6) $H^{\circ}\left(\operatorname{Ir}, \mathrm{O}_{\mathrm{gr}}(1)\right) \sim H^{\circ}\left(x_{i}, z^{\text {oj }}\right)$

PGL (V) $\perp H: 16^{\circ}$ and we need the quotent of

$$
\text { Flil6 }{ }^{\circ} \text { by PGL (V). }
$$

$$
\begin{aligned}
F_{d}: \operatorname{seh}^{\circ} & \longrightarrow \text { Set } \\
T & \longrightarrow\left\{\begin{array}{ll}
(x, z) & \\
\frac{1}{T} & \text { s.t. }\left(x_{t}, J_{t}\right) \\
\text { is prmitively } \\
\text { polarized ks of degreeded }
\end{array}\right\} / \text { ~ }
\end{aligned}
$$

$$
\frac{x, z}{\frac{\downarrow}{T}} \cong{\underset{T}{T}}_{x^{\prime}, z^{\prime}}^{\downarrow_{T}} \Leftrightarrow \psi: x \xrightarrow{\sim} x^{\prime}, \psi^{*} z^{\prime} \cong z \theta p_{r}^{*} M
$$

$\mathcal{Z}=t \quad \tilde{f}:$ Sah $^{\circ} \longrightarrow$ Set be suoh a funotor.

Fine moduli space
$\phi: F \cong \operatorname{Hom}(-F)$.

Coarse moduli space

$$
\phi: F \mathcal{L}_{F}=\operatorname{Hom}(-, F)
$$

(1) bijective over spec ©

$$
\text { (2) } \forall F^{\prime} \text { and } \psi: I_{d} \longrightarrow h_{F}
$$

(1) fine moduli space F_{d}

$$
\text { family }{\underset{B}{\downarrow}}_{(x, z)} \Longleftrightarrow B \longrightarrow F_{d}
$$

(II coarse moduli space Fd

$$
\text { family } \begin{gathered}
(x, y) \\
l_{B}
\end{gathered} \rightarrow B \rightarrow F_{d} \text { but not converooly. }
$$

Cakgorical Quokent $H=H i l b^{\circ}$, PL.
(1) $\pi: 7 \longrightarrow F \quad P G L$-invariant

$$
P G L \times H \longrightarrow H \longrightarrow F \text {. }
$$

(2) $\forall \pi^{\prime}: H \longrightarrow F^{\prime} \quad P G L$ - invariant

$$
V_{i \cdot} h w=g
$$

\exists categorical quotient of thill by PGL (v) which is
quasi projective \& coarse moduli space for F_{d}.

Using results of Bort, this coarse moduli space is seen to yield the same answer as the period method.

S2. Very ampleness on K3s
The above is a longer story. We well only prove:

Theorem $\mathcal{Z} \longrightarrow X$ ample over a K3 surface. Then
II $\mathcal{Z}^{\otimes 2}$ is globally generated
["] \mathcal{Z}^{03} very ample

Remark A similar result is true for abolian varieties
(Thionte: Elliptic curves are cubbies in \mathbb{P}^{2}).

Question
(1) Ane there generalizations for $x^{[n]}$ \& $K_{n-1}(A)$?
(2) Are there generalizations for moduli of shoves over x, A ?
(3) Ane there generalizations for moduli of bundles over curves?

$$
\begin{aligned}
& \text { Example } \\
& \pi: X \longrightarrow p^{2} \text { double cover } \\
& \pi_{*} O_{x}=G_{p}+O_{p^{(-3)}} \text { Lecture } \\
& \mathcal{L}=\pi^{*} O(1) .
\end{aligned}
$$

$$
\pi: X \longrightarrow p^{2} \text { double cover branched along sextic. }
$$

$\mathcal{J}, \mathcal{J} \otimes 2$ are not very ample

Why? W= have

$$
\begin{aligned}
H^{0}\left(x, z^{2}\right) & =H^{0}\left(\pi^{2}, \pi_{*} \pi^{*} O(2)\right) \\
& =H^{0}\left(\pi^{2}, G(2) \otimes \pi_{*} G\right)= \\
& =H^{0}\left(\mathbb{\pi}^{2}, O(2) \otimes(O+O(-3))\right) \\
& =H^{0}\left(\mathbb{P}^{2}, O(2)\right)+H^{0}\left(\mathbb{p}^{2}, O(-1)\right) \\
0 & O(2)) .
\end{aligned}
$$

Thus $|2 \mathcal{Z}|: X \underset{2: 1}{\longrightarrow} \mathbb{P}^{2} \longrightarrow \mathbb{P}^{\sigma}$ is mot an embedding.

$$
\begin{aligned}
& \text { Remark Matsusaka's big Theorem } \\
& \times \text { smooth prof, } \mathcal{L} \rightarrow x \text { ample dim } x=d \\
& \Rightarrow \nexists m, \mathcal{L}^{\otimes o m} \text { very ample, } m \sim L, L L^{d-1} K,
\end{aligned}
$$

Quick reminder

$$
\begin{aligned}
\mathcal{z} \longrightarrow x, \phi_{2}: x & \rightarrow \mathbb{P} H^{0}(x, L)^{2} \\
x & \longrightarrow e v_{x}
\end{aligned}
$$

$$
\text { Bs } \mid Z /=\left\{x: \phi_{L} \text { undefined }\right\}
$$

$$
=\left\{x: e v_{x} \equiv 0\right\}
$$

$$
=\{\text { all sections of } \mathcal{L} \text { vanish at } x\}
$$

(1) $\mathcal{Z} \operatorname{bp} \Leftrightarrow B s|\mathcal{L}|=\phi$
(2) $亠$ very ample $\Leftrightarrow \phi$ closed embedding.
(3) χ ample $\Leftrightarrow \exists k>0, \dot{\alpha}^{k}$ is very ample.

Fugita conjecture

$$
\text { dim } X=d, \text { smooth } / \sigma, \mathcal{L} \text { ample. }
$$

Then $K_{x}+m \mathcal{Z}$ is base point free if $m \geq d+1$ ．
（⿴囗⿰丨丨丁口）very ample if $m \geq d+2$ ．

Remark II curves， $\bar{\alpha}$ ample $\Leftrightarrow \operatorname{deg} \bar{\alpha}>0$ H．

$$
\begin{aligned}
& \operatorname{deg} Z \geq 2 g \Rightarrow z \quad b p f \\
& \operatorname{deg} z \geq 2 g+1 \Rightarrow Z \text { very ample }
\end{aligned}
$$

$\operatorname{deg} K_{c}+m^{z}=2 g-2+m \operatorname{dgg} z \geq 2 g$ if $m \geq 2 \Rightarrow b p f$
$d=g K_{c}+m \mathscr{L} \geq 2 g+1$ if $m \geq 3 \Longrightarrow$ very ample
（ii）surfaces：$k_{x}+3 \alpha$ b pf

$$
K_{x}+42 \text { very ample. }
$$

（Iii）threefolds：$K_{x}+4$ L bf（En－Zazarsfld $)$ ．

In general：$m \geq\left(2^{d+1}\right)+1$ ．（Angehrn－Siu）．
\&3. Reider's Theorem
$z^{2}>0$ and z nef. over smooth projective surface

II if $z^{2} \geq 5$ \& x is a basepoint of $K_{x}+z$. \exists divisor

- ffectre, $x \in D$. such that

0. $\alpha=0$ \& $\Delta^{2}=-1$. or
D. $\alpha=1 \quad \& \quad \Delta^{2}=0$.
[II] if $\alpha^{2} \geq 10 \& k_{x}+2$ doe not sioparak $*+j \nexists$ divisor
effective, $x, y \in \Delta$. such that.
$\Delta .2=0$ \& $D^{2}=-2,-1$ or
$\Delta \cdot \alpha=1$ \& $D^{2}=-1,0$ or
D. $\alpha=2 \quad \& \quad \Delta^{2}=0$.

Corollary A (Fwita for surfaces)

$$
\alpha \text { ample } \Rightarrow K_{x}+3 Z \bar{Z} \text { is pf., } K_{x}+4 \mathscr{Z} \text { very ample. }
$$

In deed $(3 Z)^{2} \geq \sigma$. The condition $\Delta . z$ fo since z ample,
$0 \neq 0$ - ffective and $x .(3 \not \approx) \neq 1$ for numerical reasons
$\Rightarrow K_{x}+3 z$ bp. The case $K_{x}+4 z$ very ample is similar.

Corollary B (Bombien - Kodarra)
K_{x} big \& nef (minimal surface of general type)
$\Rightarrow 4 k_{x}$ bare point free.
Ike very ample away from (-2) curves.

Use $\mathcal{Z}=3 K_{x}$ and $\mathscr{Z}=4 K_{x}$ in Rider. We only need to
rule out $K_{x} . \Delta=0, \Delta^{2}=-1$ which cannot happen since

$$
x\left(\theta_{x}(D)\right)=x\left(\theta_{x}\right)+\frac{1}{2} \Delta(\Delta-k)=x\left(\theta_{x}\right)-\frac{1}{2} \notin \mathbb{Z}
$$

$$
\begin{aligned}
& \text { Corollary } c(u s+\varepsilon) \\
& \text { If } x=k 3 \text { surfaces } \mathcal{L} \text { ample } \Rightarrow 2 \mathcal{L} \text { bpf \& } 3 \text { vory ample. }
\end{aligned}
$$

Inderd, Reider applies sence $\alpha^{2}>0$ \& \mathcal{Z}^{2} even $\Rightarrow(3 \alpha)^{9}>\sigma_{\text {, }}$

$$
(42)^{2}>10 .
$$

same argument worke for abolian surfaces, Enriques surfaes.

$$
\begin{aligned}
& \text { Corollary } B \quad x \text { dol } P_{e q z o} \Rightarrow-K_{x} \text { big \& nef } \\
& \mid \text {-m } K_{x} / \text { is bpf } \forall m \geq 1 \text {. untess m } \quad \forall 1, \quad K_{x}{ }^{2}=1 \text {. }
\end{aligned}
$$

S4. Strategy_ for Raider Assume otherwise.

LI Encode the geometry in a rector bundle rank 2 over X.

LIT steely the rector bundle \& show it cannot exist.

Preliminaries

$$
\begin{aligned}
& F^{\prime} \mathcal{F}^{\prime \prime} \rightarrow x \text {. Conjidar }=x \text { tenorons: } \\
& 0 \longrightarrow F^{\prime} \longrightarrow F^{\prime} \longrightarrow F^{\prime \prime} \longrightarrow 0 \\
& \|\quad\| \|^{\|} \\
& 0 \longrightarrow F^{\prime} \longrightarrow F^{\prime} \longrightarrow F^{\prime \prime} \longrightarrow 0
\end{aligned}
$$

$\operatorname{Hom}\left(\mathbb{F}^{\prime \prime}, \quad\right):$

$$
\begin{aligned}
& \operatorname{Hom}\left(F^{\prime \prime} F^{\prime \prime}\right) \xrightarrow{\delta} E x t^{\prime}\left(F, F^{\prime}\right) . \\
& \mathbb{1}_{\mathcal{F}^{\prime \prime}} \longrightarrow \quad \mathrm{E}^{\omega} E_{x} t^{0}\left(\mathcal{F}^{\prime \prime}, \mathcal{F}^{\prime}\right) \text {. }
\end{aligned}
$$

Our bundle will be constructed as an extension.
δ_{-}Warm -up_ - Max Norther's Theorem for curves.

Recall (H. Cup).
II Y normal, $Y \longleftrightarrow \mathbb{P}^{r}$ projectively normal if

$$
H^{\circ}\left(O_{\mathbb{p}^{r}}(k)\right) \rightarrow H^{\circ}\left(r, O_{r}(k)\right) \quad \forall k \geq 1 .
$$

Y lied on the correct $*$ of degree hyporsurfaces.
[12) $\mathcal{Z} Y$ very ample, \mathcal{Z} normally generated

$$
\operatorname{Sym}^{k} H^{0}(Y, Z) \longrightarrow H^{0}\left(r, \bar{z}^{k}\right)
$$

Recall (H.chpIV).
$\sqrt{6} \operatorname{deg} Z \geq 2 g+1 \Rightarrow Z$ vary ample
(II) $c \neq$ hyper=lliptic $\Rightarrow K_{c}$ is very ample.

This yields the canonical embedding

$$
c \longrightarrow \mathbb{R}^{9-1}
$$

Theorem

TI $\operatorname{deg} \alpha \geq 2 g+1 \Rightarrow z$ is normally gonorated.
[1] $c \neq$ hyper=lliptic $\Rightarrow k_{c}$ is projectively normal.
η
find a different proof in $A C G H$.

Example $g=4: C \longleftrightarrow \mathbb{E}^{3}$ projectively normal

$$
\text { Math } 206 \text { - Feature } 11
$$

February 12,2021

S1. Warm - up to Roider - Curves
C smooth progeotive curve, H.chpin.
(1) K_{c} is very ample

$$
C c \mathbb{P} H^{0}\left(K_{c}\right) \cong \mathbb{P}^{9-1}
$$

(2) c hyperelliptic

$$
C \underset{2: 1}{\longrightarrow} \mathbb{P}^{\prime} \xrightarrow[v_{\text {anonese }}]{\longrightarrow} \mathbb{\mathbb { P }}^{v-1}
$$

Theorem (Max Noother) If c is not hyper=lliptic,
(*) is projeotively normal \therefore e.

$$
S_{y m}^{k} H^{0}\left(K_{c}\right) \longrightarrow H^{0}\left(K_{c}^{0 k}\right) .
$$

Example $g=4 \quad x \longleftrightarrow \mathbb{P}^{3}$

$$
\begin{gathered}
\underline{k=2} \quad S_{y m^{2}} H^{\circ}\left(K_{x}\right) \longrightarrow H^{\circ}\left(x, K_{x}^{\otimes 2}\right) \\
S \| \\
S_{y m}{ }^{2} H^{\circ}\left(O_{p^{3}}(1)\right) \rightarrow H^{\circ}\left(O_{x}(2)\right) \\
S \| \\
H^{\circ}\left(O_{p}^{3}(2)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Note } \operatorname{dim} H^{0}\left(O_{p^{3}}(2)\right)=10 \text { \& } \operatorname{dim} H^{0}\left(x, K_{x}^{\otimes 2}\right)=9 \\
& \quad \Rightarrow 3 \text { ! unique quadric on which } x \text { lies. }
\end{aligned}
$$

$$
\underline{Z}=3: H^{0}\left(\sigma_{p^{3}}(3)\right) \longrightarrow H^{0}\left(O_{x}(3)\right) .
$$

$\Rightarrow 7!5$ dime space of cubics on which \times lies
(4 of these are quadrics x plane) $\Rightarrow \exists$ new cubic C

Conduction $X=Q \cap C$ since degree $=6$ on both ides.
Proof (Green - Zazarsfeld)

Easier proof is possible, but the current one generalizes further.

Suffices

$$
H^{0}(c, k) \otimes H^{0}\left(c, K^{m}\right) \rightarrow H^{0}\left(c, K^{m+1}\right)
$$

\& use induction on m. We take m=1. (hordest case)

$$
\begin{aligned}
& H^{0}(c, K) \otimes H^{0}(c, K) \rightarrow H^{0}\left(c, K^{\otimes 2}\right) \text {. surgeative. } \\
& \Longleftrightarrow H_{\text {Sll sern dualigy }}^{H^{0}(2 K)^{2}} \longrightarrow H^{0}(K)^{2} \text { 因 } H^{0}(K)^{2} \text { ingective. } \\
& \Leftrightarrow H^{\prime}\left(K^{-1}\right) \longrightarrow H^{0}(K)^{2} \otimes H^{0}(K)^{2} \text { ingeohre. } \\
& \zeta \Rightarrow E x t^{\prime}(k, 0) . \longrightarrow H^{0}(k)^{2} \otimes H^{0}(k)^{2} \text { ingeotice }
\end{aligned}
$$

If not ingective take $e \in E x t^{\prime}(K, G)$ in the kernel, $e \neq 0$.

Then e gives an extension

$$
\begin{equation*}
0 \rightarrow G \longrightarrow E \longrightarrow K \longrightarrow 0 \tag{1}
\end{equation*}
$$

Claim This is exact on global sections

$$
\text { Why? } 0 \rightarrow h^{\circ}(0) \rightarrow h^{\circ}(E) \rightarrow h^{\circ}(k) \longrightarrow h_{h^{\prime}(\theta)(k)^{2}}^{\rightarrow \cdots}
$$

$$
\Rightarrow h^{\circ}(E)=h^{\bullet}(0)+h^{0}(K)=1+g . \geq 3 .
$$

$$
\operatorname{det} E \cong K_{c}
$$

$$
\text { Fix } p \in c . \Rightarrow \hbar^{0}(E(-p)) \geq h^{0} E-2>0 \text {. }
$$

Take a section of E vanishing at $D \ni p$. This gives.

$$
O \leftrightarrow E(-0) \Leftrightarrow G(\Delta) \xrightarrow{5} E
$$

$$
0 \rightarrow D \rightarrow E \rightarrow K D^{-1} \rightarrow 0, D=0(0) . \quad(2) .
$$

by computing dotermmants. to identify the quotient sheaf.

Take global sections in (2).
(*) $g+1=h^{\circ}(E) \leq \rho^{\circ}(D)+h^{\circ}(K-D)$.

We will show (*) already proves C is hyperolliptic.

Riemann- Rock

$$
\begin{aligned}
1-g & +d \lg D=h^{0}(D)-h^{0}(D)=h^{0}(D)-h^{0}(k-D) . \\
(*) & \Leftrightarrow 2+d \lg \Delta \leq 2 h^{0}(\Delta) \\
& \Leftrightarrow 1+\frac{d \lg \Delta}{2} \leq h^{0}(\Delta) .
\end{aligned}
$$

Clifford's theorem (H.N.5.4).
special divisors
$\longrightarrow h^{\prime}(\Delta) \neq 0 \Rightarrow h^{\circ}(\Delta) \leq 1+\frac{d \lg \Delta}{2}$

If equality holds $\Rightarrow \Delta=0$, or $\Delta=K$ or C hyperalliptic.

- $p \notin D=0$ or C hyperelliptic cannot happen.

$$
D=K: \quad 0 \longrightarrow K \longrightarrow E \longrightarrow 0 \longrightarrow 0
$$

$$
0 \longrightarrow O \longrightarrow E \longrightarrow K \longrightarrow 0
$$

This would imply these extensions are split, but $=\neq 0$.

The remaining case
Riemann- Rock

$$
\text { If } h^{\prime}(\Delta)=0 \Rightarrow h^{0}(0)=1-g+\operatorname{drg} \Delta
$$

Also from $(2) \Rightarrow h^{\circ}(\Delta)=h^{\circ}(E) \geq g+1 \Rightarrow d e g \Delta \geq 2 g$.
$(2) 0 \longrightarrow D \longrightarrow E \longrightarrow \Delta^{-0} \longrightarrow 0$

$$
\begin{gathered}
E x t^{\prime}\left(K \Delta^{-1}, \Delta\right)=H^{\prime}(2 \Delta-K)=H^{0}(2 K-2 \Delta)=0 \\
\Rightarrow E=\Delta+K \Delta^{-1} \text { is s. }{ }^{11 t}
\end{gathered}
$$

Back to (i). the map $\mathcal{O} \rightarrow K \Delta^{-1}$ is zero, for degree reasons. Thus
(1) $0 \rightarrow 0 \underbrace{\longrightarrow}_{0} \rightarrow 0+K \Delta^{-9} \rightarrow O_{\Delta}+K D^{-1} \longrightarrow 0$.

But the quotient in (o) was K not $O_{D}+K \Delta^{-0}$!

$$
\begin{array}{rlr}
\delta 1 . \frac{1}{2} . & \begin{aligned}
& \text { Aside }-\operatorname{Proof} \text { of Clifford's Tho } \\
& h^{1}(D) \neq 0 \Leftrightarrow h^{0}(D) \leq \frac{d g g D}{2}+1 \\
& \Leftrightarrow h^{0}(D)+h^{0}(K-\Delta) \leq g+1 \quad \text { Riemann-Roch }
\end{aligned}
\end{array}
$$

For effective divisors $D_{1} E=K-D$

$$
\begin{array}{r}
\Phi:|D| \times|K-D| \longrightarrow|K| \\
(A, B) \longrightarrow A+B
\end{array}
$$

Φ flite because we can write $C=A+B$ in fitly many ways as effective divisors

$$
\begin{aligned}
& \Rightarrow\left(h^{0}(\Delta)-1\right)+\left(h^{0}(k-\Delta)-1\right) \leq \frac{h^{0}(k)}{9}-1 \Rightarrow \\
& \Rightarrow h^{0}(\Delta)+h^{0}(k-\Delta) \leq g+1 \quad \text { (*) }
\end{aligned}
$$

For the equality stakment, induct on deg D. $\neq 0, K$.

$$
\operatorname{deg} \Delta=2 \Rightarrow \Delta \text { is } g_{2}^{\prime} \Rightarrow c \text { hyperellijptic. }
$$

Construction deg $\Delta \geq 4$. Δ gives equality: $h^{\circ}(\Delta)=1+\frac{d \operatorname{dg} \Delta}{2} \geq 3$
Take $E \in|K-D|, p \in E, 2 d E$.
Take $\Delta \in(\Delta 1, p, q \in \Delta$.
This is possible since $h^{\circ}(0-p-2) \geq h^{\circ}(0)-2 \geq 1$
Clam

$$
\Delta^{\prime}=\Delta n E \text { gives equality in Clifford, deg } D^{\prime}<d r g D \text {. }
$$

Than use induction to conclude.

Why?

$$
0 \longrightarrow G\left(\Delta^{\prime}\right) \longrightarrow G(\Delta)+G(E) \rightarrow G\left(\Delta+E-\Delta^{\prime}\right) \rightarrow 0
$$

Then $D+E-\Delta^{\prime}=K-D^{\prime}$. Take global sections:

$$
\begin{aligned}
& h^{\circ}(\Delta)+h^{\circ}(E) \leq h^{0}\left(\Delta^{\prime}\right)+h^{\circ}\left(K-\Delta^{\prime}\right) \\
& \Leftrightarrow g+1=h^{\circ}(\Delta)+h^{\circ}(k-\Delta) \leq h^{\circ}\left(\Delta^{\prime}\right)+h^{\circ}\left(k-\Delta^{\prime}\right) \leq g+1 \\
& d \\
& \text { equality in clifford for } 0 \text {. } \\
& \text { scoured above } \\
& \text { in (} x \text {) } \\
& \Rightarrow D^{\prime} \text { girls quality in clifford as well. }
\end{aligned}
$$

Raider
$\mathcal{Z}^{2}>0$ and $Z n \in f$. over smooth projective surface
[传 if $z^{2} \geq 5$ \& x is a base point of $K_{x}+\mathcal{Z} \Rightarrow \Delta$ divisor

- ffective $x \in D$. such that
D. $\alpha=0$ \& $\Delta^{2}=-1$. or
$\Delta . \alpha=1 \quad \& \quad s^{2}=0$.
[IL] if $\alpha^{2} \geq 10 \& k_{x}+L$ does not sioparate $* y \nexists 0$ divisor
effective, $x, y \in \Delta$. such that.
D. $2=0$ \& $D^{2}=-2,-1$ or
$\Delta \cdot 2=1$ \& $\Delta^{2}=-1,0$ or
D. $\alpha=2$ \& $\Delta^{2}=0$.

Strategy_ for Rider Assume Otherwise.

II encode the geometry in a rector bundle rank z over X.

LII shady the rector bundle \& show it cannot exist.
fl. Sheaves on smooth surfaces (Friedman' book, Okon=k's book)
(1) F torsion free $\Rightarrow F \longleftrightarrow \mathcal{F}^{22}$
(2) \mathcal{F} reflexive if $\mathcal{F} \cong \mathcal{F}^{\nu \nu}$
(3) \mathcal{F} coherent $\Rightarrow \mathcal{F}^{2}$ rofloxive
(4) $\operatorname{sing}(F)=\{x: F i$ not locally fro $a t+\}$.

F torsion free $\Rightarrow \operatorname{sing}(F)$ codon ≥ 2
\tilde{F} reflexive $\rightarrow \operatorname{Sing}(F)$ codimz3.
(5) \times smooth surface \& \mathcal{F} torsion free
$\Rightarrow \mathcal{F}^{w} \%$ call free and

$$
\begin{aligned}
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}^{n 2} \longrightarrow & \underset{l}{\tau} \longrightarrow 0 . \\
& \text { supported in dim } 0 .
\end{aligned}
$$

Example X smooth surface, F torsion free of rank 1 .

$$
\begin{aligned}
& J^{n \nu}=\operatorname{lin} x \text { bund/ }=\boldsymbol{Z} \text {. } \\
& F \hookrightarrow \mathcal{F}^{\omega}=\alpha \quad \Rightarrow \mathcal{J}^{-1} \hookrightarrow \mathcal{O} . \\
& \Rightarrow F \otimes \mathscr{Z}^{-0}=1 \neq \\
& \Rightarrow \mathcal{F}=\mathcal{Z} \otimes l_{z}, \mathcal{F} \subset x, \quad \operatorname{dim} z=0 .
\end{aligned}
$$

§3. Constructing vector bundles over surfaces (Serra)

$$
(E, s) \quad \operatorname{rank} E=2, s \text { section, } Z-d e f E
$$

$$
0 \longrightarrow O \longrightarrow \mathcal{5} E \longrightarrow I_{2} \rightarrow 0, z \leq x .
$$

Local picture $E /_{k} \cong e^{2} \otimes 0, s /=(f, g)$ regular
$0 \rightarrow \mathcal{O} \longrightarrow \mathcal{O}+\mathcal{O} \longrightarrow\langle, g\rangle \longrightarrow 0$.
$1 \rightarrow(f, g)$.

$$
(u, v) \longrightarrow g u-f v .
$$

Conversely Given (z, z) can we construct a vector bundle as above?

$$
\text { We need } e \in E x t '(z / z, G)
$$

ls $\varepsilon \quad e_{0}$ call froe? $0 \rightarrow 0 \rightarrow \varepsilon \rightarrow \alpha / 2 \rightarrow 0$.

Proposition
$\dot{\varepsilon}$ is not locally free $\Longleftrightarrow \exists z^{\prime} \subseteq z$,

$$
e \in \operatorname{lm}\left\{E_{x} t^{\prime}\left(Z /_{z}, 0\right) \longrightarrow E_{x} t^{\prime}\left(2 I_{z}, 0\right)\right\} .
$$

Poof

$$
\begin{aligned}
& e \leadsto 0 \longrightarrow \mathcal{O} \longrightarrow \varepsilon \longrightarrow z \otimes 1 / \rightarrow 0 \text {. (1) } \\
& \uparrow\left||\quad| \quad z^{\prime} \neq z\right. \text {. } \\
& e^{\prime} \leadsto 0 \rightarrow 0 \longrightarrow \varepsilon^{2 v} \longrightarrow z \otimes I_{z^{\prime}} \rightarrow 0 \text { (i)'. } \\
& \begin{array}{l}
\tau \quad \tau \\
\downarrow \\
0 .
\end{array} \quad \begin{array}{l}
\tau \\
1 \\
0
\end{array}
\end{aligned}
$$

The second now corresponds to an extension E^{\prime} which maps
to e. and $e^{\prime} \in E x t^{\prime}(\not / 2 ; 0)$. Not ε mot locally free

$$
\Leftrightarrow r \neq 0 \Leftrightarrow Z^{\prime} \subsetneq Z .
$$

Corollary (Cayley - Bacharach)

$$
\text { If } \forall z^{\prime} \subseteq z, \operatorname{ext}^{\prime}\left(z / z^{\prime}, 0\right)<\operatorname{ext}^{\prime}(z / 2,0) \text { then }
$$

E is locally free.
// Sure duality.
(x) if $\forall z^{\prime} \underset{\prime^{\prime}}{ } z: \quad h^{\prime}\left(\alpha K_{x} / z^{\prime}\right)<\hbar^{\prime}\left(z k_{x} I_{z}\right)$.
then ε locally free.

$$
\begin{gathered}
\text { Take length }\left(2^{\prime}\right)=\text { length }(2)-1 . \\
0 \rightarrow I_{2} \rightarrow /_{2} \rightarrow \sigma_{x} \rightarrow 0 \\
0 \rightarrow H^{0}\left(Z K_{x} / 2\right) \rightarrow H^{0}\left(Z K_{x} z_{z}^{\prime}\right) \rightarrow \sigma \rightarrow H^{\prime}\left(2 K_{x} I_{2}\right) \rightarrow H^{\prime}\left(Z K_{x} z^{\prime}\right) \rightarrow 0
\end{gathered}
$$

Condition $(x) \Leftrightarrow 1^{\circ}\left(\alpha k_{x} /_{z}\right) \simeq 1^{\circ}\left(\alpha k_{x} /_{z^{\prime}}\right)$.
\Leftrightarrow All scchons of $\mathcal{Z} K_{x}$ vanishing at z^{\prime} vanish at Z.

Example $X=\mathbb{E}^{?}, \quad Z=E, n E_{2}=$ intersection of two . Niptic curves. Then any cubic C passing through 8 of the s intersection point passes through the last.

$$
\text { Math } 206 \text { - Zeoture } 12
$$

February 17, 2021
Plan - Fimioh Reider

- More on linear series: Hyperelliptic kzs
- Elliptic K3s
no. Last time x smooth projective surface

$$
z \longrightarrow x \text { hie bundle, } z \hookrightarrow x \text { dim. zero }
$$

$$
\begin{aligned}
& \text { (1) eG Ext }\left(z / z, O_{x}\right) \cong E_{x} t^{\prime}\left(\sigma_{x}, k_{x} z / z\right)=H^{\prime}\left(k_{x} z / z\right) \text { Ser } . \\
& \Longrightarrow \quad 0 \rightarrow O_{x} \rightarrow \mathcal{E} \longrightarrow \alpha / 2 \rightarrow 0
\end{aligned}
$$

(2) If $\forall z^{\prime} \subsetneq Z, \hbar^{\prime}\left(z K_{x} I_{z^{\prime}}\right)<\hbar^{\prime}\left(z K_{x} / z\right)$ then

Sis locally free ($C B$ condition).
§1. Very important Examples (will use later)

$$
\begin{aligned}
& \text { IA l } Z=\phi \\
& \text { If } H^{\prime}\left(k_{x}+2\right) \neq 0, t a k_{e} e \in H^{\prime}\left(k_{x}+2\right),=\neq 0 \text {. Then } \\
& 0 \rightarrow O_{x} \rightarrow \mathcal{Q} \rightarrow \alpha \rightarrow 0 . \& \text { \& vector bundle }
\end{aligned}
$$

This example well be used to prove

Theorem (Kawamata-Vi-hweg)

$$
\alpha^{2}>0 \quad n=f \Rightarrow H^{\prime}\left(k_{x}+z\right)=0
$$

B. $Z=\{x\}$. Assume $x \in B_{s}\left|K_{x}+\mathcal{I}\right|$ then

$$
\begin{aligned}
& 0 \longrightarrow k_{x} \mathcal{Z} \otimes l_{*} \longrightarrow k_{x} \mathcal{Z} \longrightarrow \mathbb{\sigma}_{*} \longrightarrow 0 \text { yields }
\end{aligned}
$$

$$
\begin{aligned}
& Z_{z}+e \in H^{\prime}\left(K_{x} z \otimes I_{x}\right), e \neq 0 \text {. Then we abstain }
\end{aligned}
$$

$$
\Rightarrow 0 \rightarrow 0 \rightarrow E \rightarrow K_{x} \mathcal{Z} I_{x} \rightarrow 0 \text { \& } \sum \text { rector bundle }
$$

since the Cayky - Bacharach condition is satisfied. $\left(z^{\prime}=\phi\right)$.

This example wall yield Rider - ${ }^{\text {st }}$ half.

스 $Z=\{x, y\}$ Assume $K_{x}+z$ does not separate
x and y. Then
$0 \longrightarrow G \longrightarrow \Sigma \longrightarrow \mathcal{Z} \longrightarrow 0$ \& ε veotor-bol/t.

This example wall yield Reider-2 id half.

Step II Study the rector bundle E
II stability. \& Bogomolor inequality.
[i]) Chern classes

S 2. Stability of rector bundles on surfaces.
$Z=t x$ be smooth projective surface
$v \rightarrow x$ tororon free, α not divisor, $\alpha^{2}>0$

$$
\mu_{L}(\nu)=\frac{c, \nu \cdot L}{r k \nu}=L-s \text { lope }
$$

Def V is L-stable if $\forall 0<\operatorname{rank} \omega<\operatorname{rank} V$: $w c v$ than $\mu_{L}(\omega)<\mu_{L}(\nu)$.

Remark $r k \omega=r k \nu \Rightarrow \mu_{L}(\omega) \leq \mu_{L}(\nu)$.
poof
Indeed, $W \hookrightarrow V$ give $W^{w} \longrightarrow V^{n}$. This is in ective
since the kerncl t_{t} is torsion froe, being a suboheaf of

$$
w^{v v}=\text { locally froc. Also } R \text { is supported on } \operatorname{sing}(\nu) \cup \operatorname{sing}(w)
$$

which has codim 2. Thus $K=0$ and the map is ingective.
Taking determinants, we find a nongero map

$$
\begin{aligned}
& \text { det } V^{w v} \longrightarrow \operatorname{det} w^{v v}< \\
& \Longleftrightarrow \text { det } V \longrightarrow \text { det } W \text { non-zero } \\
& \Leftrightarrow O \longrightarrow \operatorname{det} \omega \cdot(\operatorname{det} \nu)^{2} \text { non-zero } \\
& \Leftrightarrow \quad \operatorname{dot} \omega \cdot(\operatorname{dot} v)^{2}=O(\Delta), \Delta \geq 0 \\
& \Rightarrow \quad c,(w)=c,(v)+\Delta \quad, 0 \geq 0 \text {. } \\
& \Rightarrow \mu_{L}(w)=\mu_{L}(v)+\frac{D . L}{r_{k}} \geq 0 \text { sinco } D .2 \geq 0 \text { (L nof). }
\end{aligned}
$$

Lemma V is L-stable, $V \rightarrow Q \rightarrow 0$ torsion free quotient with

$$
0<r k Q<r k \nu . \quad \Rightarrow \mu_{L}(\nu)<\mu_{L}(Q) .
$$

Proof $z_{z}+K=K_{e r}(\nu \longrightarrow Q) . \Rightarrow K$ torsion free

$$
\begin{aligned}
& \text { Writ } r^{\prime}=r k k, r^{\prime \prime}=r k Q, r k \nu=r^{\prime}+r^{\prime \prime} \\
& \alpha^{\prime}=c,(k) \cdot 2, \alpha^{\prime \prime}=c,(Q) \cdot 2, \alpha=c,(\nu) \cdot 2 . \\
& \Rightarrow \alpha^{\prime}+\alpha^{\prime \prime}=\alpha .
\end{aligned}
$$

By stability $\frac{\alpha^{\prime}}{r^{\prime}}<\frac{\alpha}{r}$. We nosed to show $\frac{\alpha}{r}<\frac{\alpha^{\prime \prime}}{r^{\prime \prime}}$.

$$
\frac{\alpha^{\prime}}{r^{\prime}}<\frac{\alpha^{\prime}+\alpha^{\prime \prime}}{r^{\prime}+r^{\prime \prime}} \quad \underset{\text { chock. }}{\Longleftrightarrow} \frac{\alpha^{\prime}+\alpha^{\prime \prime}}{r^{\prime}+r^{\prime \prime}}<\frac{\alpha^{\prime \prime}}{r^{\prime \prime}}
$$

Soma $\Phi: V \longrightarrow V, V=L$-stable vector bundle

$$
\Phi=\lambda \cdot \mathbb{1}
$$

Proof $\check{L}_{=} t \in X, \Phi_{x}: V_{*} \longrightarrow V_{*}$ eigenvalue λ.
Define $\tilde{\Phi}=\Phi-\lambda \cdot \mathbb{1}$. Show $\tilde{\Phi}=0$. Assume not.

Jet $Q=\operatorname{lm} \tilde{\Phi} \longleftrightarrow V$ torsion free

$$
\tilde{\phi} \neq 0 \Rightarrow Q \neq 0 \Rightarrow r k Q \neq 0 .
$$

$V \rightarrow Q$ gives $\mu_{L} V<\mu_{L} Q$
$Q \longleftrightarrow V$ gives $\mu_{L} Q<\mu_{L} v$
K torsion free
unless $r k Q=r k V \Rightarrow-k K=0 \stackrel{\leqslant}{\Rightarrow} K=0 \Rightarrow \not{f}$ is injeotive.

Let $\tilde{\phi} \in \operatorname{Hom}(v, v)$ have minimal polynomial

$$
\tilde{\bar{\Phi}}^{k}+a, \tilde{\Phi}^{k_{-1}}+\cdots+a_{k}=0,
$$

$$
\begin{aligned}
& \text { Evaluating af } * \text { \& using of hae o ar eigenvalue } \\
& \Rightarrow a_{k}=0 \text {. }
\end{aligned}
$$

Using. $\widetilde{\Phi}$ ingeative

$$
\Rightarrow \tilde{\Phi}^{k-1}+\cdots+a_{k-1}=0
$$

This contradicts minima lily of k. QED.

Corollary $h^{\circ}\left(v^{v} \otimes v\right)>1 \Rightarrow V$ is not L-stable.

Remark If $-k \nu=2$. V not L - stable we find

$$
w c v, \text { oe } w=1, \mu_{L}(w) \geq \mu_{L}(v)
$$

Assume V is a vector bundle.

Claim We may assume w locally free $\& \nu / v$ torsion free

Proof $w=\mu \otimes I_{u} . \longrightarrow w^{w v}=M$.

$$
W c V \text { gives } w^{\omega v} \longleftrightarrow V^{w} \cong V \text { \& } w^{w n} \text { locally free }
$$

To achieve ν / w torsion free, we twist with a divisor $D \geq 0$.

Note $0 \longrightarrow \omega^{n+w} \longrightarrow \nu$ and

$$
\mu_{L}\left(w^{n=w}\right)=\mu_{L}(w)+\underline{D L} \geq \underline{L} \mu_{L}(w) \geq \mu_{L}(\nu) \text {. }
$$

To see how the divisor D arises, work locally.

$$
\begin{aligned}
\text { Let } Q & =\nu / w^{n+w} .
\end{aligned} \begin{aligned}
W_{*} \cong O_{x, x} & \longrightarrow V_{*}=O_{x, x}+O_{x, x} \\
1 & \longrightarrow(f, g) . \quad \text { Leet } t=g \operatorname{cd}(f, g) \text { in } O_{x, x}
\end{aligned}
$$

Then Q_{x} has torsion supported on $t=0$. This is the germ of the divisor Δ at $*$.

Gorollary V is not L-stable $V=c t o r$ bundle $\Rightarrow \exists \mathrm{M}, \mathrm{N}$
line bundles, $A \subseteq X$ zero dimensional such that

$$
0 \longrightarrow M \longrightarrow \nu \longrightarrow N \otimes I_{A} \longrightarrow 0
$$

whore

$$
(m-N) .2 \geq 0 . \quad \Longleftrightarrow \mu_{L}(m) \geq \mu_{L}(v) \geq \mu_{L}(N / A) .
$$

Bogomolov Inequality

$$
\begin{aligned}
& V \rightarrow \times \text { rank } r \text { rector bundle, } L-s t a b l e ~ \\
\Rightarrow & (r-1) c_{1}^{2}-2 r c_{2} \leq 0 .
\end{aligned}
$$

Proof for $k 3$ surfaces

Assume $(r-1) c_{1}^{2}-2 r c_{2}>0$. Compute

$$
\begin{aligned}
x\left(v^{\prime} \otimes v\right)= & h^{\circ}\left(v^{2} \otimes v\right)-f^{\prime}\left(v^{2} \otimes v\right)+h^{2}\left(v^{2} \otimes v\right) \\
& \left\{S_{0}\right. \text { ore } \\
= & h^{\circ}\left(v^{\prime} \otimes v\right)-h^{\prime}\left(v^{\prime} \otimes v\right)+h^{\circ}\left(v \otimes v^{2}\right) . \\
= & 2 h^{\circ}\left(v^{v} \otimes v\right)-h^{\prime}\left(v^{\prime} \otimes v\right) \leq 2 f^{\circ}\left(v^{\prime} \otimes v\right) .
\end{aligned}
$$

$$
\begin{aligned}
& x\left(v^{2} \otimes v\right)=\int_{x} c h v^{2} \cdot c h v \cdot \operatorname{todd}(x) \\
&=\int_{x}\left(r-c_{1}(v)+\frac{c_{1}(v)^{2}}{2}-c_{2}(v)\right)\left(r+c_{1}(v)+\frac{c_{1}^{2}(v)}{2}-c_{2}(v)\right)(1+2[p t]) \\
&=2 r^{2}+(r-g) c_{1}^{2}(v)-2 r c_{2}(v) \geq 4 \\
& \Rightarrow h^{\circ}\left(v^{2} \otimes v\right)>2 . \\
& \Rightarrow v \text { cannot be } 2-\text { ofable }
\end{aligned}
$$

Sketch of proof ingerneral (Moduli of sheaves, Thy 3.4.1).
(1) $w<06 L$-ample \& V is L - stable

This is because we can perturb $2 \&$ the s tricot inequalities are preserved.
uses complex diff. geometry
(2) V sumistable \Rightarrow End (v) remistable \& $c,($ End $V)=0$.

$$
2 r c_{2}-(r-1) c_{1}^{2}=c_{2}(\text { End } v) \text { Sot } W=\operatorname{End}(v) \text {. }
$$

(3) WTS: W semistable \& $c,(w)=0 \Rightarrow c_{2}(w) \geq 0$. Z ot $s=r b W$.
(4). $c \in / k L /, k \gg 0$ smooth curve. We claim:

$$
\begin{aligned}
& h^{\circ}\left(5 y m^{n} W(-c)\right)=0 \\
& h^{0}\left(5 y m^{n} W \otimes k_{x}(-c)\right)=0
\end{aligned}
$$

Indeed, W semistab/e \Rightarrow Symn W semistable (complex geomety)

$$
17 \text { ho }^{0} \operatorname{smm}^{n} W(-c) \neq 0 \Rightarrow \underbrace{G(c)}_{\substack{\text { positive } \\ \text { slope }}} \longrightarrow \underbrace{\operatorname{Sym}^{n} W}_{\text {zeroslope }} \text { falor! }
$$

(5)

$$
\begin{aligned}
h^{\circ}\left(S y m^{n} w\right) \leq & h^{\circ}\left(\operatorname{sym}^{n} w / c\right)+h^{0}\left(5 y m^{n} w(-c)\right) \\
& =h^{0}\left(5 y m^{n} w / c\right)+0 \text { by (4) }
\end{aligned}
$$

(6) $\hbar^{2}\left(s y m^{n} W\right)=h^{\text {Serr }}\left(s_{y m}{ }^{n} W \otimes k_{x}\right) \leq h^{b y}(4)$.
(7) Let $\mathbb{P}=\mathbb{P}\left(\left.W\right|_{c}\right) \rightarrow c$ be a $\mathbb{P}^{s-1}-b u n d l e, s=r k W$.

$$
\begin{aligned}
& \text { Since } \quad \pi_{*} O_{\mathbb{p}}(n)=S_{y m}{ }^{n} W / c \\
& \Rightarrow \quad h^{0}\left(S_{y m^{n}} W / c\right)=h^{0}\left(\mathbb{P}, O_{\mathbb{R}}(n)\right) \leq \alpha_{n}{ }^{\sigma}
\end{aligned}
$$

In general by induction on dimension, $h^{\circ}\left(Y, M^{n}\right) \leq \alpha \cdot n^{\operatorname{dim}}$.
(8) $\quad \hbar^{0}\left(\left.5 y m n W\right|_{c} \otimes K_{x} /_{c}\right) \leq \beta n^{s}$
(g)

$$
\begin{aligned}
& \chi\left(x, \operatorname{sym}^{n} W\right) \leq h^{0}\left(\operatorname{sym}^{n} W\right)+h^{2}\left(\operatorname{sym}^{n} W\right) \\
& \leq h^{0}\left(\operatorname{sym}^{n} W / c\right)+h^{0}\left(\operatorname{sym}^{n} W / c \otimes K_{c}\right) \\
& \leq(\alpha+\beta) n^{s} \\
&(\nu)+(8)
\end{aligned}
$$

(10)

$$
\begin{aligned}
& \text { Flirzebruch- Rlemann- Roch } \\
& \begin{aligned}
x\left(s y m^{n} W\right) & =\int_{x} c h s_{y m} m^{n} W . t d(x) \\
& \sim-\frac{n^{s+1}}{(s+1)!} \cdot c_{2}(W)+\ldots
\end{aligned}
\end{aligned}
$$

If $c_{2}(w)<0$ this growo like n^{s+1} contradioting (9).
Th us $c_{2}(w) \geq 0 . \quad Q E D$.

$$
\text { Math } 206 \text { - Meoture } 13
$$

February 19, 2021
fo. Last few lectures $\alpha \rightarrow x$ line bundle, ne, $\alpha^{2}>0$.
A. If $H^{\prime}\left(k_{x}+\alpha\right) \neq 0$ then

$$
0 \rightarrow O_{x} \longrightarrow E \longrightarrow \alpha \rightarrow 0
$$

B. If $x \in B_{\sigma}\left|K_{x}+z\right|$ then

$$
0 \longrightarrow O_{x} \longrightarrow E \longrightarrow \alpha \oplus I_{x} \rightarrow 0
$$

c. If $R_{x}+\mathcal{Z}$ doesn't separate x, y then

$$
0 \rightarrow \sigma_{x} \rightarrow E \rightarrow \alpha \otimes I_{x, y} \rightarrow 0
$$

In all cases E is rank a rector bundle.

If $c_{1}(E)^{2}-4 c_{2}(E)>0 \Rightarrow E$ is not L-stable

For Rus: $\quad c_{1}(E)^{2}-4 c_{2}(E)+4>0 \Rightarrow E$ io not $2-s t a b / e$

$$
\begin{aligned}
& \text { Case } A 2^{2}>0, H^{\prime}\left(K_{x}+L\right) \neq 0 \text { yields. } \\
& 0 \rightarrow O_{x} \rightarrow E \rightarrow L \rightarrow 0 \\
& C, E=L \\
& C_{2} E=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Case B } \quad \forall \in B_{s} / K_{x}+L / \text { yields. } \\
& 0 \longrightarrow O_{x} \longrightarrow E \rightarrow L L_{2} \longrightarrow 0
\end{aligned}
$$

$$
c, E=L
$$

$$
\Rightarrow c_{1}^{2}-4 c_{2}=L^{2}-4>0 \quad \Rightarrow \quad E \text { is mot } L \text {-stable. }
$$

$$
c_{2} E=1
$$

$$
\begin{aligned}
& \underline{\delta 1} \text {. Computation in examples } A-C \\
& \text { claim } L^{2}>0 \Rightarrow E \text { is mot } 2 \text {-stable in } A \text {. } \\
& L^{2} \geq 5 \quad \Rightarrow \quad E \text { is mot } 2 \text { - stable in } B . \\
& L^{2} \geq 9 \Rightarrow E \text { is mot } L \text {-stable in } C \text {. }
\end{aligned}
$$

Conclusion In examples $A-C$ we have diagrams:
-
\downarrow
O_{x}
$\downarrow s$

(t) $m+N=L \quad,(m-N) \cdot L \geq 0$.

We can say a bit more!

Churn class calculation

$$
m \cdot N=\text { length }(Z)-\operatorname{longth}(A) .
$$

Proof.

We compute oh E in two ways. using additivity:

$$
\begin{aligned}
& c h E=o h M+o h N \otimes / A \\
&=1+M+\frac{M^{2}}{2}+1+N+\frac{N^{2}}{2}-\operatorname{longth}(A)[\text { point }] \\
&=\operatorname{ch} 0+\operatorname{L} \otimes / 2 \\
&=1+1+\alpha+\frac{\alpha^{2}}{2}-\operatorname{length}(z)[\text { point }] \\
& \Rightarrow \frac{M^{2}+N^{2}}{2}-\operatorname{longth}(A)=\frac{\alpha^{2}}{2}-\operatorname{longth}(z) . \\
& \Rightarrow M+N=\alpha \\
& \Rightarrow M . N=\operatorname{longth}(Z)-\operatorname{longth}(A) .
\end{aligned}
$$

Claim $N \geq 0, N \neq 0 \Leftrightarrow<-M \geq 0$

$$
\text { If } \begin{aligned}
\alpha \neq 0 \Rightarrow \alpha: M \rightarrow \alpha / \nrightarrow z & \Rightarrow 0 \rightarrow z M^{-1} \\
0 \neq 0 & \\
& \Rightarrow \alpha-M \geq 0 . \\
& \Rightarrow N \geq 0 .
\end{aligned}
$$

$$
\text { If } N=0 \Rightarrow m=\alpha \text {. Then } \alpha: \neq 0 \text { gees } \quad z=\phi
$$

\& $\alpha: 2 \longrightarrow E$ splits the vertical extension, a contradiction.

$$
\begin{aligned}
\text { If } \alpha=0 & \text { then } M \rightarrow O_{x} \Rightarrow-M \text { effective } \\
& \Rightarrow-M \cdot 2 \geq 0 . \quad b=\text { cause } 2 \text { is } n \in f
\end{aligned}
$$

However $(M-N) \cdot \alpha \geq 0 \Rightarrow(2 M-Z) \cdot Z \geq 0$

$$
\Rightarrow M . \alpha \geq \frac{1}{2} \alpha^{2}>0 \text {. contradiction? }
$$

Conclusion In cases $A-c$ we obtain
(1) $N \geq 0, N \neq 0 \Rightarrow \alpha . N \geq 0(Z \therefore \infty-f)$.
(2) $\alpha \cdot(2-2 N) \geq 0<2 \cdot(M-N) \geq 0$
(3) $N \cdot \frac{(2-N)}{M}=\operatorname{longth}(z)-\operatorname{longth}(A)$.

These will contradict lodge Index Theorem, unless

Reider etc are satisfied.
§2. Proof of Kawamata- Viohweg \& Roider

Proof of Kawamata- Viohweg (Case A)

If $H^{\prime}\left(k_{x}+2\right) \neq 0 \& \alpha^{2}>0, Z n=f$. We form the diagram:

$(3) \Rightarrow N(L-N)=l(Z)-l(A)=0-l(A) \leq 0$.

$$
\Rightarrow \quad N \cdot L \leq N^{2}
$$

(2) $\Rightarrow 2 N . L \leq L^{2}$
(1) \Rightarrow N. $2 \geq 0$.

Fledge Index Theorem

$$
\alpha^{2}>0 \quad \Rightarrow \quad(N \cdot \alpha)^{2} \geq N^{2} \cdot \alpha^{2} \text {. and equality } N=\mu L
$$

Then $(N . L)^{2} \geq N^{2} L^{2} \geq(N . L)(2 N \cdot L)=2(N \cdot L)^{2}$

$$
\Rightarrow N \cdot L=0 \quad \& \quad N^{2}=0 \Rightarrow N=\mu L . \Rightarrow N=0
$$

contradiction.

Thus L ref \& $L^{2}>0 \Rightarrow H^{\prime}\left(R_{x}+\alpha\right)=0$.

Proof of Raider Part I.

$$
* \in \operatorname{Bs}\left|k_{x}+\alpha\right|
$$

$$
O_{x}
$$

$$
\downarrow s
$$

Hodge Index Theorem

$$
L^{2}>0 \Rightarrow(N \cdot L)^{2} \geq N^{2} \cdot L^{2}
$$

(1) $N \geq 0, N \neq 0 \Rightarrow 2 \cdot N \geq 0$
(2) $\alpha \cdot(2-2 N) \geq 0 \Rightarrow L^{2} \geq 2(N . L)$
(3) $N \cdot(2-N)=1-\operatorname{longth}(A) \leq 1$.

We may assume $N \cdot(L-N)=1$. because ≤ 0 was already discussed. \Rightarrow N. $L=N^{2}+1$.

$$
\text { Hodge: } \quad(N . L)^{2} \geq N^{2} \cdot L^{2} \geq(N \cdot L-1) .2(N . L) \text {. }
$$

$$
\Leftrightarrow \quad(N . L)^{2}-2(N \cdot L) \leq 0 \Leftrightarrow N . L=0,1,2 .
$$

$$
\Leftrightarrow N^{2}=-1,0,1
$$

The case $N^{2}=1, N \cdot L=2$ forces $L^{2}=2$ false!

Thus N.L $=0, N^{2}=-1$ or $N \cdot L=1, N^{2}=0 \Rightarrow$ Rider.

Part II of Rider is very similar.

Raider's Theorem
$Z^{2}>0$ and $z n \in f$. over smooth projective surface
[1] $\because f z^{2} \geq 5$ \& x is a base point of $k_{x}+z$. \exists divisor

- ffechre, $\Delta \neq 0$. such that
D. $\alpha=0$ \& $\Delta^{2}=-1$. or
$\Delta . \alpha=1 \quad \& \quad \Delta^{2}=0$.
(II) if $\alpha^{2} \geq 10 \& k_{x}+2$ doe not sioparak $*+j \nexists$ divisor
effective, $\Delta \neq 0$,. such that.
s. $2=0$ \& $D^{2}=-2,-1$ or
$\Delta \cdot 2=1$ \& $D^{2}=-1,0$ or
D. $\alpha=2 \& \Delta^{2}=0$.

Summary: We proved:

- Rider, Fugita, Kawamata- Vie lwag, Kodaira - Bombieri

On K3's (abolian / Enrigues /biolliptic)

$$
\begin{aligned}
\alpha \text { ample on a } K 3 & \Rightarrow 2 \mathcal{Z} \text { bpf (only meed Znef. }\left\{^{2}>0\right. \text {) } \\
& \Rightarrow 3 Z \text { very ample }
\end{aligned}
$$

Bonus If working over ks.
z nof,$J^{2}>0 \Rightarrow J$ bjof unless

$$
\exists \Delta, D, z=1, D^{2}=0
$$

Why? Just consider the possible cases in Rider.
The condition $2^{2} \geq 5$ can be improved since the proof of
Bogomolov for kos allows for a bit more slack.

Theorm $D \neq 0, D^{2}=0 \Rightarrow x$ is $=$ lliptic. $x \rightarrow \mathbb{P}$.'
$W=$ will show this next hme.

Next (1) More on hnear systems on K3s
(2) proof of theorem \& a disoussion of alliptic K3s.

S3. More on hear systems on K3s

Assume $z^{2}=2 g-2>0, \mathcal{Z}$ base point free

$$
\begin{aligned}
& \Phi_{2}: x \longrightarrow \mathbb{P} H^{0}(x, 2)^{2} \cong \mathbb{P}^{9} . \\
& \phi_{2}^{*} \sigma_{\mathbb{R}}(1) \cong \mathcal{Z}
\end{aligned}
$$

Remark $z^{2}>0$. \mathcal{Z} basepointfree $\Rightarrow z$ nof

$$
\begin{aligned}
& h^{\prime}(x, z)=0 \text { by Kawamata- Vi= hog. } \\
& \hbar^{2}(x, z)=h^{0}\left(x, z^{-}\right)=0 \\
& h^{0}(x, z)=y(x, z)=2+\frac{z^{2}}{2}=g+1
\end{aligned}
$$

Remark

$$
B=\operatorname{lm} \phi_{2}, x \xrightarrow{\phi} B, \quad B \text { cannot be a curve }
$$

Indeed, let $x_{b}=\phi^{-1}(b) . \Rightarrow x_{6}^{2}=0$. Now,

$$
z=\sum_{b \in H \cap B} x_{b} \quad \Rightarrow z^{2}=\sum_{b, b^{\prime} \in H \cap \pi} x_{b} \cdot x_{b}=0 \text {. But } \alpha^{2}>0!
$$

Thenceforth, B is a surface (nondegenerate in \mathbb{P}^{9}).

Remark Berthi's theorem (H, III. II.3).
generic $\quad C \in|Z|$ is smooth \& irreducible.
because I is not composite with a pencil.

Quvotion What can we say about this curve?

We already know genus (c) $=g$.

Zama $\square 1 \quad Z / c \cong K_{c}$
$\pm \phi_{2} /_{c}: c \longrightarrow \mathbb{B}^{9}$ factors through the
canonical map

$$
\Phi_{K_{c}}: c \longrightarrow \mathbb{P}^{9-1}
$$

Proof
[1. Lot $C \in|Z|$ smooth \& irnolucible. We given by
a section $s \in H^{\circ}(x, \bar{z})$. We have an exact sequence

$$
0 \longrightarrow T_{c} \longrightarrow T_{x} / c \quad N_{c / x}=\alpha / c \longrightarrow 0
$$

$$
\text { Take determinants: } \bar{z} / c \cong K_{c} \text {. }
$$

[i] $0 \rightarrow 0 \longrightarrow z \longrightarrow z / c \rightarrow 0$.

$$
\begin{aligned}
& 0 \rightarrow \propto \xrightarrow{\sim} \rightarrow H^{\circ}(X, Z) \rightarrow H^{\circ}(\alpha / c) \rightarrow H^{\prime}(O)=0 . \\
& H^{\circ}\left(K_{c}\right)
\end{aligned}
$$

This proves $\phi_{2} /_{c}: C \longrightarrow \mathbb{P} H^{\circ}\left(K_{c}\right)^{2}$ is the
canonical embedding.

Question What can we say about Φ_{2} and its image?

Recall (dol Mezzo - Math 203 A - CH)

If S^{\prime} is a reduced erred nondegunerate variety

$$
\text { in } \mathbb{P}^{g} \text { then }
$$

$$
\operatorname{deg} S \geq \operatorname{codim} S+1 \text {. (induct on dimension) }
$$

For surfaces

$$
\text { Equality only occurs if }\left(s=\mathbb{B}^{2} c \mathbb{P}^{2} \text { or }\right)
$$

[I] Veronese surface $\mathbb{I}^{2} \longrightarrow \mathbb{I}^{5}$, deg $=4$, codim $=3$
([i] rational normal scrolls

$$
\text { If } \operatorname{dog}(x \rightarrow B)=2 \text { then } B \text { must be } \mathbb{E}^{2} \text { or a }
$$

rational normal scroll.

Otherwise $\operatorname{deg}(x \longrightarrow B)=2$.

To be continued next time.

$$
\begin{aligned}
& d=1 P_{e} \neq 20^{\prime} \text { Tum }
\end{aligned}
$$

$$
\begin{aligned}
& 2 g-2 .=\operatorname{deg}\left(x \rightarrow \mathbb{Z}^{9}\right)=\operatorname{deg}(x \rightarrow B) \operatorname{deg} \underbrace{\left(B \rightarrow \mathbb{P}^{9}\right)}_{\geq g-1} . \\
& \Rightarrow \operatorname{drg}\left(x \xrightarrow{\phi_{2}} B\right) \leq 2 .
\end{aligned}
$$

$$
\text { Math } 206 \text { - Zeoture } 14
$$

February 24, 2021

$$
\begin{aligned}
& \int 0 . \quad \text { Last time } \\
& x=k_{3} \text { surface, } \alpha \rightarrow x, \alpha^{2}>0 \text {, base point free } \\
& \Phi_{\alpha}: x \rightarrow \mathbb{P}^{9}, \quad \alpha^{2}=29-2,>0
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \operatorname{deg} \Phi_{\alpha}=1 \text { or } 2 \& \text { if degree is } 2 \text { then } \\
B=\phi_{\alpha}(x) \Rightarrow \operatorname{deg}\left(B \longrightarrow \mathbb{Z}^{g}\right)=g-1 .
\end{array}
$$

If S^{\prime} is a reduced irred mondegunerate variety

$$
\begin{aligned}
& \text { in } \mathbb{P}^{g} \text { then } \\
& \quad \operatorname{deg} S \geq \operatorname{codim} S+1 .
\end{aligned}
$$

Further discussion
$y \rightarrow x$ basepointfree, $\alpha^{2}>0$
$C \in|\alpha|$ smooth \& irreducible
$\Phi_{2} \|_{c} c \longrightarrow \mathbb{R}^{g-9}$ is the canonical map

Recall: if c is hyperslliptic than
$\Phi_{K_{c}}: c \longrightarrow \mathbb{P}^{g-9}$ has degree 2 onto its image,
else it is an isomorphism onto ito image.
(1) deg $\Phi_{2}=2$. \& generic $c \in \mid z /$ is hyperelliptic
$\Rightarrow(x, 2)$ is said to be hyper elliptic.
\qquad
(2) $=1$ ore deg $\Phi_{2}=1.2$ generic $c \in|\mathcal{I}|$ is not hyperelliptic

Id may contract curves $D, 2 . \Delta=0 \Rightarrow \Delta^{2}=-2$
\& the image B may be singular.
§1. The nonbyper elliptic case

The following result bears analogies with Max Norther's

Theorem (x, z) is not hyperolliptic
$\Rightarrow \mathcal{Z}$ is normally generated

$$
\operatorname{Sym} H^{k}(x, \alpha) \longrightarrow H^{0}\left(x, \alpha^{k}\right) \text { surjective. }
$$

Proof Take $c \in|z|$ smooth \&irred. \& not hyperelliptic.
$s \in H^{\circ}(Z)$ that outs out C.

$$
\begin{aligned}
& (1) 0 \rightarrow 0 \rightarrow 2 / c \rightarrow 0, z / c \cong K_{c}
\end{aligned}
$$

We have $H^{\prime}\left(Z^{k}\right)=0$ by Kawamata- $V i=$ hweg. Thus
taking cohomology, we obtain from (2):

surgeetive eince

$$
\begin{aligned}
& H^{\circ}(2) \longrightarrow H^{\circ}\left(K_{c}\right) \longrightarrow H^{\prime}(0)=0 . \\
& \text { fom }(1) .
\end{aligned}
$$

The middle map is surjeative by diagram ohase.

S2. The Hyperelliptic case

$$
\begin{aligned}
\alpha=\pi^{*}\left(h_{1}+h_{2}\right) \\
E=\pi^{*} h_{1}
\end{aligned} \quad \alpha \cdot E=2 . ~\left(\alpha \cdot{ }^{2}=4 .\right.
$$

$$
\begin{aligned}
& \text { (4) } \times \underset{2: 1}{\pi} \mathcal{F}_{1} \text { branohed along a omooth } \\
& \Sigma \in\left|-2 K_{\pi_{j}} /=\left|4 r_{\infty}+6 f\right|\right. \\
& \alpha=\pi^{*}\left(\sigma_{\infty}+k f\right) \\
& \Rightarrow \quad \alpha^{2}=2(-1+2 k)=4 k-2 . \\
& \alpha \cdot E=2 . \\
& E^{2}=\pi^{*} f^{2}=0 .
\end{aligned}
$$

Saint - Donal

$$
\begin{aligned}
& z^{2} \geq 4, z \text { base pointfree \& primitive. Then } \\
& (x, z) \text { iyper=lliptic } \\
& \Leftrightarrow \exists \text { with E. } \bar{z}=2, E^{2}=0 .
\end{aligned}
$$

If B is a reduced irred nondegmerak variety in \mathbb{P}^{9} then

$$
\operatorname{deg} B \geq \operatorname{codim} B+1
$$

For surfaces (Griffith \& Harris, cup F).

$$
\text { E quality only occurs if }\left(B=\mathbb{B}^{2} \longleftrightarrow \mathbb{B}^{2} \text { or }\right)
$$

M Veronese surface $\mathbb{I}^{2} \longrightarrow \mathbb{I}^{5}$, deg $=4$, codim $=3$
[4] rational normal scrolls

Rational Normal Scrolls

$$
|z|: F_{n} \longrightarrow \mathbb{P}^{n+2 r+1} \quad \text { olegrer } Z^{2}=(\Gamma+(n+r) f)^{2}=n+2 r
$$

$$
\text { embedding for } r>0 \quad \text { codimension } n+2 r-1
$$

Let Fir drool the image $\cong \mathbb{F}_{n}$.
$W=$ obtain $F_{n, r} \mathbb{P}^{n+2 r+1} \cdot \quad, \quad \nabla_{\infty}+(n \rightarrow r) f$.

$$
\Rightarrow \text { deg } \mathbb{F}_{n, r}=\operatorname{codim} \mathbb{F}_{n, r}+1
$$

$$
\begin{aligned}
& B=F_{n} \quad \tau_{\infty}^{2}=-n, \sigma_{\infty} \cdot f=1, f^{2}=0 \\
& \downarrow \uparrow \Gamma_{\infty} \\
& \mathbb{P}^{\prime} \\
& Z=F_{\infty}+(n+r) f \text { is bp if } r \geq 0 \\
& \text { Very ample if } r>0 \text {. } \\
& \text { eR } \\
& x(z)=n+2 r+2 \text {. \& } h^{\prime}(Z)=h^{e}(Z)=0 \text { using the } \\
& \text { natural exact sequences. }
\end{aligned}
$$

$$
\text { When } n=0, F_{n} \longrightarrow \mathbb{P}^{n+1} \text { \& } l_{0} t F_{n, 0} \text { be the }
$$

image. $I_{n, 0} \longrightarrow \mathbb{P}^{n+1}$ has degree n, cod om $n-1$

$$
\Rightarrow \operatorname{deg}=\operatorname{cod}, m+1 .
$$

Note L. $F_{\infty}=0 \Rightarrow Z$ con tracts F_{∞}

$$
\sigma_{0}=\sigma_{\infty}+n f \in|Z| \Rightarrow \sigma_{0} \quad \therefore \text { a hyper plane reckon }
$$

$F_{n, 0}$ is a cone over $F_{0}=$ rational normal curve in \mathbb{E}^{n}.

$$
\text { If }(x, 2) \text { hyper=lliptic then } \Phi_{2}: x \longrightarrow B \text { where }
$$

$B=\mathbb{P}^{2}$ or $B=$ rational normal scroll. $\mathbb{F}_{n, r}$ with
(1) $x \longrightarrow \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{2} \quad \alpha^{2}=2$
(2) $\quad \times \rightarrow \mathbb{P}^{2} \longleftrightarrow \mathbb{P}^{\sigma(2)} \quad \mathcal{L}$ not punitive.
(3) $\times \underset{\pi}{2: 1} F_{n, r} \cong F_{n} \longrightarrow \mathbb{P}^{n+2 r+1} \quad(r>0)$.

$$
\begin{gathered}
\alpha=\pi^{*}\left(\sigma_{\infty}+(n+r) f\right) \\
E=\pi^{*} f . \Rightarrow E^{2}=\pi^{*} f^{2}=0 \\
\alpha, E=2
\end{gathered}
$$

When $r=0$, work with $2+\pi^{*} f$ and map to $F_{n, 1}$
and find E this way.

$$
\text { Dolgachev-Rrid: showed } 0 \leq n \leq 4 \text {. }
$$

Outcome $\quad z^{2}>0, z \quad n=f$
(1) z not $b p f \Rightarrow \exists \Delta^{2}=0, \Delta \cdot z=1$.
last time.
(2) Z bpf \& hyper =lliptic $\Rightarrow \exists \Delta^{2}=0$, D. $Z=2$
(α promitive, $z^{2} \geq 4$)
(3) $=1 \mathrm{se} \Phi_{\alpha}$ is birational \& may contract (-2) curves
§3. The elliptic case

Question what does the condition $\Delta^{2}=0$ mean?

Theorem A $\Delta \neq 0, \Delta^{2}=0 \Rightarrow x$ is an elliptic
fibration $x \longrightarrow \mathbb{B}$ '.

Theorem $A^{\prime} \Delta \neq 0, \Delta^{2}=0$, Δ ref \Rightarrow

$$
\Rightarrow x \text { elliptic fibration } x \rightarrow \mathbb{P}^{\prime}, \quad D=m f \text {. }
$$

Theorem $A^{\prime \prime} \alpha^{2}>2 n+f, \quad 2 . \Delta=1, \quad \Delta^{e}=0 \quad \Rightarrow$
$\Rightarrow x$ =lliptic fibration $x \longrightarrow \pi^{\prime}$ with section F

$$
\alpha=\sigma+m f
$$

Remark

It can be shown that if $\rho \geq 5 \Rightarrow x=1 l i p t i c$ ．

We first prove Theorem A＇\＆Theorem A ．

Example $x \rightarrow \mathbb{P}^{\prime}$ ，elliptic fberakon，$\alpha=m f$ ，

Claims 且 $h^{0}(z)=m+1 \Rightarrow h^{\prime}(z)=m-1$ ．since $f(2)=2$ ．

III Z base point free $\Rightarrow \mathcal{Z}$ of

1 km 园 follow o by induchon on m using

$$
0 \rightarrow O((m-1) f) \rightarrow O .(m f) \rightarrow O(m f s) / f \cong O_{f} \rightarrow 0
$$

$\Rightarrow \quad h^{\circ}(O(m f)) \leq h^{\circ}(O((m-1) f))+b^{0}\left(O_{f}\right) \leq m+1$ ．Not that
if $x_{1} \ldots x_{m} \in \mathbb{P}^{\prime}$ then $f_{x_{1}}+\ldots+f_{x_{m}}$ is a section of $0(m f)$

$$
\Rightarrow h^{0} O(m f) \geq 1+m
$$

Then $\mathbb{P} H^{\circ}\left(O(m f 1)=\mathbb{P}^{m} \cong S_{y m}^{m} \mathbb{E}^{\prime}\right.$ corresponding to
the choice of m points $x_{1} \ldots x_{m} \in \mathbb{P}^{n}$ \& fibers over them.

This shows Bs $\mid \mathrm{mf} /=\Phi$ and

$$
|m f|: x \longrightarrow \mathbb{P}^{m} \text { factors } x \longrightarrow \mathbb{P}^{n} \underset{\{ }{\}} \mathbb{P}^{m}
$$

Veronese.

Example

$$
x \underset{F}{\underset{F}{f}} \mathbb{P}^{\prime} \quad \alpha=r+m f, \quad m \geq 2
$$

Claims \underline{G} Z $\quad z=f, z^{2}>0$
[I] Z is mot base point free.

$$
\begin{aligned}
& \text { If } \mathcal{J} \cdot c<0 \Rightarrow(\tau+m f) \cdot c<0 \Rightarrow F \cdot c<0 \text { or } \quad \mathrm{r} \cdot \mathrm{f}<0 . \\
& \Rightarrow c \subseteq \tau \text { or } c \subseteq f . \Rightarrow c=\sigma \text { or } c \subseteq f . \text { But }
\end{aligned}
$$

if $c=\nabla, \quad \downarrow . \Sigma=m-220$. If $c \subseteq f \Rightarrow c \cdot f=0$ by.
picking a fiber \tilde{f} avoiding c so that $c . f=c \cdot \tilde{f}=0$.
Thus $\mathcal{Z} n=f$ \& $\mathcal{Z}^{2}=2 m-2$. Thus

$$
h^{\prime}(z)=h^{2}(z)=0
$$

Since $x(\mathcal{\alpha})=2+\frac{2^{2}}{2}=m+1 \Rightarrow \hbar^{0}(\alpha)=m+1-h^{\circ}(m f)$.

The divisors in $|\bar{Z}|$ are $\tau+f_{x_{1}}+\ldots+f_{x_{m}} \Rightarrow$

$$
\Rightarrow \quad B s|Z|=\Gamma .
$$

$$
\begin{gathered}
\text { Math } 220 \text { B- Feature } 15 \\
\text { february } 26,2021
\end{gathered}
$$

So. Goal Today_ -

The theorem of Piatrtaki-Shapiro \& Shafarvich.

Theorm A $\Delta \neq 0, \Delta^{2}=0 \Rightarrow x$ is an olliptic
fibration $x \longrightarrow \mathbb{Z}$.

Theorm $A^{\prime} \quad \Delta \neq 0, \Delta^{2}=0$, Δ nef \Rightarrow

$$
\Rightarrow x \text { elliptic firation } x \rightarrow \mathbb{P}, \quad D=m f \text {. }
$$

$\delta 1$ Theorem $A^{\prime} \Rightarrow$ Theorem A

Recall from Lecture 8,

Lemma $Z_{z} t D$ be a divisor with $\Delta^{2} \geq 0$. There are
R_{1}, \ldots, R_{n} such that

$$
D^{\prime}= \pm s_{R_{1}} s_{R_{2}} \ldots s_{R_{n}} D \text { is } n \circ f .
$$

where s_{e} are reflections $s_{e}(\Delta)=\Delta+(D . R) R$.
Note $S_{R}(D)^{2}=D^{2} \Rightarrow D^{\prime 2}=D^{2}=0, D^{\prime} n=f$.

By Theorem $A^{\prime}, \quad x \longrightarrow \mathbb{P}^{\prime}=l l i p t i c, \quad D^{\prime}=m f$

We furthermore see that

$$
\Delta= \pm s_{R_{n}} \ldots s_{R_{1}} \Delta^{\prime}= \pm\left(m f+\sum \alpha_{i} R_{i}\right) .
$$

for some m and some α :

S2. Proof of Theorem A^{\prime} - Preliminaries

$$
\alpha^{2}=0, \alpha \neq 0 \Rightarrow \exists x \rightarrow \mathbb{P}^{\prime}=\text { lliptic fibrations. }
$$

Terminology y

$$
\text { set }|\mathscr{L}| \neq \phi .
$$

Bs /Z/ could have components of dim o or 1 .

Let F be the union of all 1- dime components

$$
\Longrightarrow F=\text { fixed part of } / L / \text {. }
$$

$M=L-F=$ mobile part. Not $L^{\circ}(L)=b^{\circ} L(-F)$ since
all sections of L vanish at F. This shows $h^{\circ}(2) \cong h^{\circ}(N)$
and Bs $|M|=$ zero dimensional components.

$$
\begin{array}{r}
\text { Example } \times \underset{f}{\mathbb{R}^{\prime}}=\text { lliptic with section. } \\
\sigma^{2}=-2, \quad \sigma . f=1, f^{2}=0
\end{array}
$$

$$
\begin{aligned}
\mathcal{Z}=t \quad \alpha= & \alpha+m f, m \geq 2 \\
& \alpha \cdot F=m-2, \quad \mathcal{L}, f=1, \quad \alpha^{2}=2 m-2>0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \quad b i g \text { \& } n=f \quad \Rightarrow \quad \hbar^{\prime}(z)=\hbar^{2}(z)=0 \text {. } \\
& x(z)=2+\frac{\alpha^{2}}{2}=m+1 \quad \Rightarrow \quad h^{0}(y)=m+1 .
\end{aligned}
$$

Here F is the fixed part, mf is the mobile part
\mathcal{J}-mia II $h^{\circ}(L)=h^{0}(L-F)=h^{\circ}(M) \neq 0$.
[i] M bpf $\Rightarrow M$ mobile \Rightarrow sn nf
(4) $6^{\circ}(F)=1$

Proof A M bpf $\Rightarrow B s M=\phi \Rightarrow M$ mobil\%
M mobile $\Rightarrow M$ nf. If MAc $\langle 0$, irreducible,
$l=f \quad c^{\prime} \in / \mathrm{m} / . \Rightarrow c \cdot c^{\prime}<0 \Rightarrow c$ is component of $c^{\prime} * c^{\prime} \in / \mathrm{m} /$
$\Rightarrow C \leq B_{B}|m|=0$ - dime. , contradiction.

Proof 411 Assume $h^{0}(G(F)) \neq 1 \Rightarrow h^{0} G(F) \geq 2$.
zit $F^{\prime} \equiv F, F^{\prime} \neq F, F^{\prime}=$ effective. Then by u,

$$
h^{\circ}(\angle)=h^{\circ} \angle(-F)=h^{\circ} \angle\left(-F^{\prime}\right)
$$

Thus $0 \rightarrow H^{\circ}\left(L\left(-F^{\prime}\right)\right) \longrightarrow H^{\circ}(L)$. is an isomorphism, so all vechono of L vanish af $F^{\prime} \Rightarrow F^{\prime} \subseteq B s / L / \Rightarrow F^{\prime} S F$.

But $F-F^{\prime} \equiv 0$ \& $F-F^{\prime} \geq 0 \Rightarrow F-F^{\prime}=0 . \Rightarrow F=F^{\prime}$.

Contradiction! Then $h^{\circ} O(F)=1$.

Lemma (should have proven a while back)

$$
\alpha^{2}=0, \alpha \neq 0, \alpha n=f \Rightarrow h^{0}(z) \geq 2 \Rightarrow z \text {-ffectire. }
$$

Proof Serve duality and Riemann-Roch:

$$
\begin{aligned}
& h^{0}(z)+h^{0}\left(z^{-1}\right)=h^{0}(z)+h^{2}(z) \\
&=x(z)=\alpha+\frac{\alpha^{2}}{2}=2 . \\
& \text { If } h^{0}\left(z^{-1}\right) \neq 0 \Rightarrow z^{-1}=O(0), c \geq 0, c \neq 0 \\
& \Rightarrow z . H=-c \cdot H<0 . \text { But } \alpha \text { nof } \Rightarrow \alpha . H \geq 0
\end{aligned}
$$

since $\mid \mathrm{mH}$ I contains curves. Contradiction!

Thus $h^{0}\left(z^{-9}\right)=0 \Rightarrow h^{0}(z) \geq 2$.

S3. Proof of Theorem A^{\prime}

$$
\mathcal{L}^{2}=0, \alpha \neq 0 . \alpha \quad n=f \Rightarrow \alpha \text { effective }
$$

$W T \delta: \quad Z=G(m f)$ for $x \rightarrow \mathbb{P}^{\prime}$. $\quad h^{\circ}(L) \geq 2$.

$$
\text { Sleps } \quad \text { l } \mathcal{Z} \text { mobile } B=|z|=0 \text {-dime. }
$$

[11 2 basepoint free
$\square \varnothing_{2}: x \longrightarrow \mathbb{P}^{1}$.

$$
\text { Shep II } \quad \mathcal{Z}=M+F \text {, Mobile, } F \text { fxed. }
$$

$$
0=\alpha^{2}=\alpha \cdot s+\alpha \cdot F
$$

M mobile $\Rightarrow M$ nef, α effective $\Rightarrow M, \mathcal{Z} \geq 0$.
α nef, F effectue $\Rightarrow \quad \mathcal{Z} . F \geq 0$.

$$
\begin{aligned}
\Rightarrow M \cdot \mathcal{Z}=\alpha \cdot F=0 . \quad & M^{2}+m \cdot F=0 \\
& F^{2}+M \cdot F=0 .
\end{aligned}
$$

M mobil $\Rightarrow m$ nef $\Rightarrow m^{2} \geq 0$,
M mobile $\Rightarrow M$ nef, F effective $\Rightarrow M . F \geq 0$.
$\Rightarrow A M^{2}=M . F=0 \Rightarrow E^{2}=0$ since $L^{2}=0$.

Then $h^{0}(F)+h^{0}(-F)=h^{0}(F)+h^{2}(F) \geq X(F)=2+\frac{F^{2}}{2} \doteq 2$.
Since $F \geq 0 \rightarrow h^{\circ}(-F)=0$ for $F \neq 0 \Rightarrow h^{\circ}(F) \geq 2$.

But ur showed $h^{\circ}(F)=1$. Thus $F=0 \Rightarrow L=m$
\Rightarrow Bs /L/ dimension zero.

Step I We show Z basepoint free.
Z et $x \in B_{s}|\mathcal{Z}|, \quad c \in|\mathcal{Z}|$ fixed, $c^{\prime} \in|\mathcal{Z}|$. arbitary
$\Rightarrow c \cdot c^{\prime}=z^{2}=0$. Since $x \in c n c^{\prime} \Rightarrow e, c^{\prime}$ share

$\Rightarrow C \subseteq$ BS $\mid z /=$ zero -dime. Contradiction.

Otherwise decompose c into components.

$$
\begin{gathered}
\text { Step E"M } \alpha \text { basepoint free \& } \phi: x \longrightarrow B \longrightarrow \mathbb{P} H^{\circ}(\alpha) \\
\alpha=\phi^{*} O_{B}(1) .
\end{gathered}
$$

\qquad
\qquad
B point $\Rightarrow \angle$ trivial false.

$$
B \text { surface } \Rightarrow L^{2}=\phi^{*} \sigma_{B}(1)^{2}=\phi^{*}(\text { points })>0
$$

but $L^{2}=0$. false.

Thus B is a curve, reduced \& irreducible.

Stein Factorization (H. III. II. 5)

$$
f: x \longrightarrow \text { proper, } \exists \times \xrightarrow{3} z
$$

(1) g proper surjective $g_{*} O_{x}=O_{2} \Rightarrow$ connected fibers
(2) h finite.

Construction

$$
Z=\operatorname{spec}^{\theta_{y}} f_{*} \theta_{x} \quad f_{*} \sigma_{x} \rightarrow Y
$$

$$
x \xrightarrow{9} z \text { is natural and } g_{*} \sigma_{x}=\sigma_{z} \text { is immediate. }
$$

(Work affine locally).
\qquad

$$
\text { If } Y=\operatorname{spec} A, \quad Z=\operatorname{spce} H^{\circ}\left(x, O_{x}\right) \Rightarrow g_{x} O_{x}=O_{z}
$$

$$
f \text { proper } \Rightarrow \text { g proper }
$$

The statement that $g_{*} \mathcal{O}_{x}=O_{2} \& g$ proper \Rightarrow fibers are connected is Larisk!'s connectedness tho H. III. II.

Claim X normal $\Rightarrow Z$ normal

Proof Work locally.

We show G_{z} is integrally closed.
$Z_{z} t F$ be a rational function on z with

$$
F^{n}+a_{1} F^{n-1}+\cdots+a_{n}=0, \quad a_{j} \in O_{z} . \Rightarrow F \in \sigma_{2} .
$$

$$
\Rightarrow \quad g^{*} F^{n}+g^{*} a_{1} \cdot g^{*} F^{n-1}+\ldots+g^{*} a_{n}=0 \cdot, g^{*} a_{j} \in \sigma_{x} .
$$

\dot{x} normal. $\Rightarrow g^{*} F \in G_{x} \Rightarrow F \in g_{*} O_{x}=O_{2}$.

$$
\begin{aligned}
& \mathscr{L}_{e} \neq \Phi: \times \xrightarrow{g} \Sigma \xrightarrow{\hbar} B \\
& g_{*} G_{x}=O_{\Sigma}, \quad \sum \text { mormal, irreduable } \Rightarrow \sum \text { smooth }
\end{aligned}
$$

Glaim $\Sigma \cong \mathbb{P}^{\prime} \Leftrightarrow H^{\prime}\left(\Sigma, \sigma_{\Sigma}\right)=0$.

Proof of claim 2oray speothal seguonce.

$$
\begin{aligned}
& E_{2}^{\dot{D}^{\prime} j^{\prime}}=H^{\dot{0}}\left(\Sigma, R^{\dot{0}} g_{*} O_{x}\right) \Rightarrow H^{\prime+j}\left(x, O_{x}\right)=H^{\prime}\left(O_{x} O_{x}\right)=0 \\
& E_{2}^{0}, \quad=H^{0}\left(\Sigma, R^{\prime} g_{*} O_{x}\right) . \\
& E_{2}^{\prime}, 0=H^{\prime}\left(\Sigma, g_{*} O_{x}\right)=H^{\prime}\left(\Sigma, O_{\Sigma}\right) .
\end{aligned}
$$

$$
\Rightarrow \Sigma \cong \mathbb{P}^{\prime}
$$

Concision We obtained $\times \xrightarrow{g} \mathbb{P}^{\prime}$.

$$
\begin{aligned}
& \bar{Z}=\phi^{*} G_{B}(1)=g^{*} h^{*} \mathcal{O}_{B}(1) \text {. } \operatorname{Lot} h^{*} G_{B}(1)=G_{\infty}(m) . \\
& \Rightarrow J=g^{*} \mathcal{O}_{p 1}(m)=\mathcal{O}(m f) .
\end{aligned}
$$

Generic fiber of g is:

- smooth by generic smoothies. H. III. 10.7
- connected. because 2arioki connectedness.
\Rightarrow elliptic curve. since $F^{2}=0=2 g(F)-2 \Rightarrow g(F)=1$.

Maroh 3, 2021
δ^{1}. Kodaira classification of singular fibers

$$
Z=t \text { be a K3 and assume } x \longrightarrow \mathbb{\pi}^{\prime}=\text { lliptio fibration. }
$$

Wo saw (Lecture 7, page 5)

$$
\sum_{x_{6} \text { angular }} e\left(x_{6}\right)=24 .
$$

Question What are the singular Rbors?

Uooful remark
$R \subseteq x_{0}$ component of singular fiber $x_{0} \rightarrow$
$\Rightarrow R . x_{0}=0$.

$$
R . x_{0}=R . x_{t}=0 .
$$

$$
\begin{aligned}
& \text { Zarish's Zomma }+\varepsilon \quad(\text { chp } 1 \text {. Huybrohts). } \\
& \pi: \times \longrightarrow \mathbb{P}^{\prime} \text { :lliptically fobred N3 surface }
\end{aligned}
$$

[i- fibers of $\bar{\pi}$ are connected
[i] If multiple fibers (they can be mon-reduced).
(1i6) D supported on a fber $\Rightarrow D^{2} \leq 0$

Iv wo th eqwo lity iff $D=\alpha f$.

V if a fiber is irreduarble \Rightarrow smooth, nodalor cuspidal

Proof
II $Z=t \cdot X_{t}=$ smooth connected fiber

- $x_{0}=$ singular fiber
\qquad
\qquad

$$
0 \longrightarrow 0\left(-x_{t}\right) \longrightarrow 0 \longrightarrow \theta_{x_{t}} \rightarrow 0
$$

$$
H^{0}(x, \sigma) \sim H^{\circ}\left(O_{x_{t}}\right) \rightarrow H^{\prime}\left(O\left(-x_{t}\right)\right) . \rightarrow H^{\prime}(O)=0
$$

Since $O\left(-x_{t}\right)=O\left(-x_{0}\right)$ we have $H^{\prime} O\left(-x_{0}\right)=0$ so

$$
\begin{aligned}
& 0 \rightarrow \underbrace{H^{0}(x, 0)}_{\mathbb{C}} \longrightarrow \underbrace{H^{0}\left(O_{x_{0}}\right)}_{\mathbb{C}} \longrightarrow H^{\prime}\left(O\left(-x_{0}\right)\right)=0 . \\
& \Rightarrow H^{0}\left(O_{x_{0}}\right)=\sigma \Rightarrow x_{0} \text { is connected. }
\end{aligned}
$$

[II) If $x_{0}=m c$. Since $x_{0}^{2}=0 \Rightarrow c^{2}=0$, c conneoted

$$
\begin{aligned}
& 0 \rightarrow O((m-r) c) \rightarrow G(m c) \rightarrow O(m \alpha) / c \cong \sigma_{c} \rightarrow 0 \\
& \text { yizlds } 0 \rightarrow H^{\circ}(O((m-1) c)) \rightarrow H^{\circ} O(m c) \rightarrow H^{\circ}\left(O_{c}\right) \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad h^{0}((m-1) c)=1 .
\end{aligned}
$$

\qquad
\qquad

But $\alpha=\sigma((m-1) c)$ satiffies $L^{2}=0$

Zast time: Serre + HRR (Zecture $1 \sigma_{0}$ page 7)

$$
\begin{aligned}
& h^{0}(\alpha)+h^{0}\left(\alpha^{-1}\right)=h^{0}(2)+h^{2}(z) \geq x(z)=2 \\
\Rightarrow & h^{0}(\alpha)=1 \& h^{0}\left(\alpha^{-1}\right) \geq 1 \Rightarrow 2 \cong 0 \Rightarrow m=1
\end{aligned}
$$

[IC) If D supported on a fiber $\Rightarrow D^{2} \leq 0$.

Assume

$$
\Delta^{2}>0 \quad \Rightarrow f^{2}<0 \quad \text { by Hodge index. }
$$

$\Delta . f=0$
7
This contradicts $f^{2}=0$.
useful remark above
$\sqrt{1 v} / \neq b^{2}=0$, we wish to show $D=\alpha f$.

Assume D is supported on a fiber X_{0} and write

$$
X_{0}=\sum m_{i} R_{i}, \quad \Delta=\sum n_{i} R_{i}
$$

$$
\text { Pick } \alpha \in Q \text { such that } D+\alpha f=\sum\left(n_{i}+\alpha m_{j}\right) R_{1} \text {. }
$$

contains only posinve coeff a negate coff. This fails only if

$$
\begin{aligned}
& \Delta=-a f . \\
& \text { Write } \Delta+\alpha f=P-N, P, N>0 \\
& \Rightarrow(D+\alpha f)^{2}=\underbrace{D^{2}}_{0}+2 \alpha \underbrace{D \cdot f}_{0}+\alpha^{2} f^{2}=0 \\
& \| \\
& \Rightarrow(P-N)^{2}=0
\end{aligned}
$$

$\Rightarrow \quad 2 P . N \leq p^{2}+N^{2}$. Now P,N are supported on
fibers so $P^{2}, N^{2} \leq 0$ by ["i] a fibers are connected so P. $N>0$. This gives a contradiction.

V C is an inced fiber. Then Z lecture 7, page 7:

$$
\begin{aligned}
y\left(O_{c}\right) & =\hbar^{\cdot}\left(O_{c}\right)-\hbar^{\prime}\left(O_{c}\right)=1-p_{a} \\
& =y(0)-x(O(-c))=-\frac{c^{2}}{2}=0 .
\end{aligned}
$$

$$
\Rightarrow \quad p_{a}=1
$$

(1) c smooth $\Rightarrow c$ elliptic
(2) c singular $\Rightarrow H \cdot \underline{V} .3 .9 .2$.

$$
0=g(\tilde{c})=p_{a}(c)-\sum_{p=i n g} \frac{1}{2} m_{p}\left(m_{p}-1\right)
$$

Since c is inced $\Rightarrow c^{\text {in red }} \& \operatorname{lrg}^{g}\left(c^{\tilde{1}}\right)<180$
$g(\tilde{c})=0$ \& $\exists!$ unique point of multiplicity 2.

This can be either a node or a cusp.
\qquad
\qquad

Remark - X_{0} fiber with ≥ 2 components
$-R$ component $\Rightarrow R^{2}=-2 . \& R \cong \mathbb{P}$.
\qquad
\qquad

$$
L^{\text {Zanisho }}
$$

Indeed, $R^{2} \leq 0$. If $R^{2}=0 \Rightarrow R=\alpha f \Rightarrow R \cdot R^{\prime}=\alpha f \cdot R^{\prime}=0$

useful
remark

$$
\begin{aligned}
& \text { Thus } R^{2}<0 \text { \& } x\left(O_{R}\right)=-\frac{R^{2}}{2}=1-p_{a} \leq 1 \text {. Then } \\
& R^{2}=-2 \& \beta_{a}=0 \Rightarrow R \cong \mathbb{R}^{!} \text {. (see Lecture 7, page 7) }
\end{aligned}
$$

Graph $J_{0} 7 X_{0}$ be a singular fiber
[a] vertices mined components of X_{0}
\rightarrow decorated by multiplicity
[4]-dges $m R_{i} \cdot R_{j}$ edges between the corresponding vertices ifs

Strategy for classification
singular fiber \Rightarrow graph \Rightarrow guadratioform \Rightarrow answer.

Example I_{n}

$$
e\left(x_{0}\right)=n .
$$

Example $I_{n}{ }^{*}$

$$
x_{0}=c_{1}+c_{2}+c_{3}+c_{4}+2\left(D_{1}+\ldots+\Delta_{n}\right)
$$

$$
\longrightarrow
$$

$\tilde{\Delta}_{n+3}=n+4$ vertices

$$
e\left(x_{0}\right)=n+5 \text {. }
$$

Other possibilities

$$
\text { euler }=10 \text {. }
$$

$$
T_{2,3,6}
$$

Beware!

euler $=2$

$$
\text { euler }=3
$$

$$
\text { euler }=4
$$

It is not hand to check that all other graphs $\tilde{A}, \tilde{D}, \tilde{E}$ uniquely determine the type of the fiber.

Since mure discussed $\tilde{A_{0}}, \tilde{A_{1}}, \tilde{A_{2}}$ above, we assume

$$
\sigma \neq \tilde{A_{0}}, \tilde{A_{1}}, \tilde{A_{2}}
$$

We show $G=\tilde{A}, \tilde{D}, \widetilde{E}$.

Classification of fibers (not multiple)
(1) I_{n} including

$$
\begin{aligned}
& I_{0}=\text { smooth } \\
& I_{1}=\text { nodal } \\
& I_{2}=X
\end{aligned}
$$

$$
\widetilde{A_{n-1}}
$$

(2) $I_{n}{ }^{*}$

$$
\tilde{\Delta}_{n+3}
$$

(3)

$$
\begin{array}{ll}
\pi & =\operatorname{cuop} \\
\frac{\pi}{\pi} & =\sim
\end{array}
$$

(4)

$$
\begin{aligned}
& \text { II }^{*} \\
& \text { III }^{*} \\
& \frac{\pi}{\text { I }}^{*}
\end{aligned}
$$

$$
\tilde{E}_{7}
$$

$$
\widetilde{E_{6}}
$$

Strategy

Fiber \Rightarrow Graph \Rightarrow Quadratic Form \Rightarrow Answer
\qquad

Quadratic form G graph, connected, vertices v :

$$
\begin{aligned}
& V=\underset{i_{i}}{\oplus} Q\left\langle v_{i}\right\rangle \\
& Q: V \times V \longrightarrow Q, \quad Q\left(v_{i}, v_{i}\right)=-2 \\
& \\
& Q\left(v_{i}, v_{j}\right)=\# \text { edges. }
\end{aligned}
$$

This is slightly different for \tilde{A}_{0} but we assumed

$$
\sigma \neq \tilde{A}_{0} .
$$

Example $G=\widetilde{A}_{n-1} \Rightarrow V \cong Q^{n}$

Quadratic Form =

$$
\begin{aligned}
Q\left(\sum_{i=1}^{n} x_{i} v_{i}\right) & =-2 \sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} x_{i+1} \\
& =-\sum_{i=1}^{n}\left(x_{i}-x_{i+1}\right)^{2} \leq 0 . \\
\& \operatorname{Ker} Q & =Q\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
\end{aligned}
$$

Remark For a singular fiber, the quadratic form

$$
Q: V \times v \rightarrow Q \text { satisfies }
$$

I $Q \leq 0$
["I kernel of Q is i-dimenocenal, spanned by a rector with nonzero entries

Remark The same happen for the $\tilde{A}, \tilde{0}, \tilde{E}$ graphs.

Proposition Assume G is a connected graph with properties $I \mathbb{D}$ \& above. Then G is $\tilde{A}, \tilde{D}, \tilde{E}$

Proof $\quad G \neq \tilde{A_{0}}, \tilde{A}$,

Step 1 Any connected graph is contained or contains an extended Dynkin diagram. \tilde{A}, \tilde{D} or \tilde{E}.

Step 2 If G, G^{\prime} are graphs as above \& $G \leq \sigma^{\prime}$ then $\sigma=6$!

Proof - if $\left|G^{\prime}\right| G \mid \geq 1$,

Kor Q_{c} contains $\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{e} \\ e\end{array}\right)$

$$
\text { Kor } Q_{6} \text {, contains }\left(\begin{array}{c}
x_{1} \\
\vdots \\
k_{e} \\
0 \\
0 \\
0
\end{array}\right) \text { \& additional vector with }
$$

nor-zero entries

- σ^{\prime} containo no multiple edges. $\Rightarrow G=\sigma^{\prime}$.
since G, 6^{\prime} are connected.

If $\exists v, w$ vertices joined by $v . w \geq 2$ edges
then

$$
Q(v+w)=v^{2}+w^{2}+2 v \cdot w=-4+2 v \cdot w \geq 0
$$

Thus $Q(\nu+w)=0$ and $\nu+w$ spans $\operatorname{Ker} Q_{6}, \Rightarrow G^{\prime}$ has only 2 vertices \& double edge \Rightarrow A, Contradiction.

Proof of Slop
IL if \exists loop in $G . \Rightarrow \tilde{A} \subseteq G$.
(12) else 6 is a tree. Further discussion:

- 7 vertex of valency ≥ 4. Then

- if \nRightarrow novertix of valency 3 , then
all vertices have valency $1 \& 2$. Then 6 is

$$
\bullet \longrightarrow \longrightarrow \sigma \subseteq \tilde{A}
$$

-2 vertices of valency $=3$ then $\tilde{\Delta} \leq 6$.

- in the remaining cases: one vertex of valency 3: Tear

$$
\begin{aligned}
& T_{3,3,3}=\tilde{E}_{6} \\
& T_{2,4,4}=\widetilde{E}_{7} \\
& T_{2,3,6}=\tilde{E}_{8}
\end{aligned}
$$

$$
\text { Assume } 2 \leq p \leq q \leq r
$$

- $p \geq 3 \Rightarrow T_{3.3,3} \subseteq G \Rightarrow \tilde{E}_{6} \subseteq G$
- $p=2,2 \geq 4 \Rightarrow T_{2,4,4} \subseteq G \Rightarrow \tilde{E}_{1} \subseteq G$.
- $p=2,2=2 \Rightarrow G \subseteq \tilde{D}$
- $p=2,2=3, r \geq 6 \Rightarrow T_{2,3,6} \subseteq 6 \Rightarrow E_{8} \subseteq 6$
- $p=2, q=3, r \leq 6 \Rightarrow G \leq T_{2,3,6} \Rightarrow 6 \leq E_{8}$

$$
\begin{gathered}
\text { Math } 2203-\text { Zeoture } 17 \\
\text { Marah } 5,2021
\end{gathered}
$$

We discussed the classical geometry of $(x, 2)$ in some detail. We now turn to moduli spaces.

$$
\tilde{f}_{g}=\left\{(x, 2): L^{2}=2 g-2,2 \text { primitive } 2 \text { ample }\right\} / \sim
$$

We have "seen "in Lecture 10 that F_{g} is a guokent

$$
[H / P G L], H c \text { Hill }
$$

Fluybrechts, \underline{v}. shows H smooth a poL acts with finite stabilizers
F_{g} is a smooth ΔM stack of dimension 19.
guasiprogectire coarse moduli scheme $O\left(\wedge_{j}\right) \backslash D_{g}^{0}$
w here $\partial_{g}^{0}=\sum_{g}, \bigcup_{\delta^{2}=-2}{ }^{2}$

$$
\delta \in へ_{J}
$$

Three moduli spaces

$$
\begin{aligned}
& M_{g}=\text { moduli of smooth curves } \\
& M_{g}, A_{g}, F_{g} \\
& A_{j}=\text { ppav. }(A, 2) \\
& t: M_{g} \longrightarrow A_{g} \\
& \mathcal{F}_{g}=\operatorname{moduk} \text { of kos. }(x, z) \\
& \text { dim } M_{g}=3 g-3, \quad M_{g}=[H / P G L] \text {. } \\
& \text { dim } A_{g}=\frac{g(g+1)}{2}, \quad A_{g}=[H \mid p G L] \text {. } \\
& \operatorname{dim} \bar{F}_{g}=19, \quad \bar{J}_{g}=[H / p G L] \text {. }
\end{aligned}
$$

In all cases $H C$ Hill (\mathbb{P}), the Hilbert rehome of a suitable projective space.

We use $\alpha^{\text {os }}$ to embed into projective apace in the ouse of $A_{g} \& F_{g}$. For curves we can use $K_{c}{ }^{\oplus m}=$ very ample, $m \geq 3$

$$
C \longrightarrow \mathbb{P} H^{\circ}\left({K_{c}}^{\oplus m}\right) \cong \mathbb{P} V .
$$

Note that $\mathcal{F}_{g}=0 \backslash D^{\circ}$ where $\mathcal{D}^{\circ} \underset{\text { open }}{\longrightarrow}$ type IV domain.

Now, A_{g} can be described as

$$
s_{p}(2 g, 2) \backslash \jmath_{g}
$$

where

$$
\jmath_{g}=\left\{\Omega \in \operatorname{Mat}_{c}(g \times g): \Omega=\Omega^{t}, \operatorname{lm} \Omega>0\right\}
$$

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in S p \text { acts } M \Omega=(A \Omega+B)(c \Omega+D)^{-} \text {. }
$$

In this descripkon, each Ω determines a torus

$$
x_{\Omega}=\sigma^{9} / \Omega \mathbb{z}^{9}+\mathbb{Z}^{9}
$$

2 the Riemann relations
$\Omega=\Omega^{t}, 1 m \Omega>0$ ensure X_{Ω} is abolion variety.
with polarization induced by Ω.'

There is a map

$$
\begin{aligned}
& t: M_{g} \longrightarrow A_{g} \quad c \longrightarrow(J a c(c), \Theta) \\
& J_{a c}(c)=H^{0}\left(\omega_{c}\right)^{2} / H_{1}(c, \mathbb{Z})=V / \Gamma \\
& \gamma: H,(c, \mathbb{Z}) \sim \sim\left\{l_{\gamma}: \omega \longrightarrow \int_{\gamma} \omega\right\}
\end{aligned}
$$

Note

$$
\left.\begin{array}{rl}
H^{0}\left(J a c(c), \Omega_{J a c}^{\prime}(a)\right.
\end{array}\right)=(1,0) \text { form on } V .
$$

The theta divisor can be described geometrically as $\Theta=\left\{2: h^{\circ}(2 \otimes M) \neq 0\right\} c \operatorname{Jac}^{\circ}(c)$ where M is a
line bundle of degree 9^{-1}. This is unguoly defined only up to translations.

The Picard Groups
(1) $P_{i c_{0}}\left(M_{g}\right)=\langle\lambda\rangle \quad 9 \geq 3$ dHarer (tofological).
(2) $P_{i \cdot c}\left(A_{g}\right)=\langle\lambda\rangle \quad g \geq 3$ (Boral (arithmatic)
(3) $P_{i c}\left(\mathcal{F}_{g}\right) \rightarrow \infty \quad$ as $g \rightarrow \infty$. «O O'Grady (geomaty).

Rnown
Borcherds - Braimier
generators
Millson - 人i_ Bergeron - Moeglini

Hodge Bundles The moduli spaces Mg, Ag, Jg carry

$$
\text { Flodge bundles } \mathbb{E}_{g}^{M}, \mathbb{E}_{g}^{4}, \mathbb{E}_{g}^{k}
$$

$$
\begin{array}{llll}
\mathbb{E}_{g}^{m} & H^{0}\left(\omega_{c}\right) & \zeta & \mathbb{E}_{g}^{m}=\pi_{*} \omega_{\pi} \\
M_{g} \quad L_{c} c & \mu_{g} & -k \mathbb{E}_{g}^{m}=g .
\end{array}
$$

E_{g}^{k}	$\mu^{0}\left(\Omega_{x}^{2}\right)$	x
\vdots	\vdots	$\downarrow \pi$
\mathcal{J}_{g}	\ni	$(x, 2)$
	\mathcal{F}_{g}	$r k E_{g}^{k}=1$.

Remark $\quad t: M_{g} \rightarrow A_{g}, \quad t^{*} E_{g}^{A}=E_{g}^{M}$.

$$
\begin{aligned}
& \lambda_{i}^{M}=c_{i}\left(\mathbb{E}_{g}^{M}\right), \quad 1 \leq i \leq g \\
& \lambda_{i}^{4}=c_{i}\left(\mathbb{E}_{g}^{4}\right), \quad 1 \leq i \leq g \\
& \lambda=c_{i}\left(\mathbb{E}_{g}^{k}\right) .
\end{aligned}
$$

K- class We can define these over the three spaces

$$
\begin{aligned}
& K_{i}^{n}=\pi_{*} c,\left(\omega_{\pi}\right)^{i+1} \\
& K_{i, j, e}^{A}= \\
& K_{*}=c \cdot\left(\Omega_{\pi}^{j}\right)^{l+1} \\
& K_{i} K_{i}=
\end{aligned}
$$

Remark In the sase of \mathcal{A}, , all K-classes are zero.

Indeed, $H^{0}\left(A, \Omega_{A}\right) \otimes O_{A} \longrightarrow \Omega_{A}$ isomorphism. Thus

$$
\begin{gathered}
\pi^{*} \pi_{*} \Omega_{\pi}^{\prime} \longrightarrow \Omega_{\pi}^{\prime} \Longrightarrow \Omega_{\pi}^{\prime} \cong \pi^{*} E \\
\Rightarrow R_{j}=\pi_{*} c_{j}\left(\Omega_{\pi}^{\prime}\right)=\bar{\pi}_{*} c_{j}\left(\pi^{*}, \mathbb{E}\right)=c_{j}(\mathbb{E}) \underbrace{\pi_{*}}_{0},=0 .
\end{gathered}
$$

Remark For Fy, we have $\Omega^{2} \pi \cong \pi^{*}$ IE

The only reasonable choice in the definition of $火$-cases above is $\pi_{*} c_{2}\left(\Omega_{\pi}^{\prime}\right)^{i+1}$.

The tautological nogs (1 st attempt).
$R^{*}\left(M_{g}\right), R^{*}\left(\mathcal{A}_{g}\right), R^{*}\left(F_{g}\right)$ is the subbing of Chow generated by both $\lambda \& K$-glares.

$$
R^{*} \cong \mathbb{C}[\lambda, k] / \text { Relations }
$$

Theme $R^{*}=\bigoplus_{k=0}^{d} R^{k}$ satisfies Poincare' duality if
(0) $R^{d} \cong \mathbb{C}$.
(2). $\forall k: \quad R^{k} \times R^{d-k} \longrightarrow R^{d} \cong \sigma$ porfot pairing.

Question

Do the inge
$R^{*}\left(M_{g}\right), R^{*}\left(A_{g}\right), R^{*}\left(\mathcal{F}_{g}\right)$ satisfy Poincare' duality?
Question

Flow do we got relations between generators?

Common Features
(1) in all three cases, we will got relations via $G R R$
for the universal family \& natural bundles (hivial, $=f_{c}$).
(2) for A_{g} and \bar{f} we will describe these ringo complofly.
(3) Applying $G R R$ we will obtain

$$
\begin{aligned}
& \text { For } M_{g} \leadsto \text { Mumford relation } \\
& A_{g} \leadsto \leadsto \lambda_{g}=0+\text { Mumford } \\
& I_{g} \leadsto \text { we also got relations } \\
& \text { (van der Ger). }
\end{aligned}
$$

Grothendieak Riemann- Roch

$$
R \pi, V^{\rho}=\sum(-1)^{k} R^{k} \pi * V^{2} .
$$

GRR $\left.\quad \operatorname{ch}\left(R \pi, V^{2}\right)=\pi!\operatorname{coh} V \cdot \operatorname{Todd}\left(T^{\pi}\right)\right)$

For a bundle B, $\operatorname{Todd}(B)=\prod_{k=1}^{\pi k} \frac{b_{i}}{1-e^{-b_{i}}} \leqslant^{\text {chern rooto of } B \text {. }}$

$$
\frac{x}{1-e^{-x}}=1+\frac{x}{2}+\sum_{k}(-1)^{k-1} \frac{B_{2 k}}{2 k!} x^{2 k} .
$$

The case of Mg (Mumford) The simplest case:

$$
\begin{aligned}
& \pi: \sigma_{\mathrm{J}} \longrightarrow M g, \quad \mu=\sigma_{\sigma} . \\
& \pi: \hat{\sigma}_{6}=\pi * \theta_{\sigma}-R^{\prime} \pi * \theta_{\sigma}=\sigma-\mathbb{E}^{V} \\
& \operatorname{ch} \pi!O_{6}=1-\operatorname{ch} E^{2} \\
& =\pi \cdot\left(\operatorname{ch} \theta_{\sigma} \cdot T 0 d d^{r l}\left(T^{r \prime}\right)\right) . \\
& =\bar{c}_{*} T_{0} d d\left(T^{r \rho}\right)=\bar{c}_{*} \frac{-\omega}{1-e^{\omega}} \text {. }
\end{aligned}
$$

where $\omega=c_{1}\left(\omega_{\pi}\right)$.

$$
\begin{aligned}
\Rightarrow 1-c h E^{\sim} & =\pi_{*}\left(\frac{-\omega}{1-e^{\omega}}\right) \\
& =\pi_{*}\left(1-\frac{\omega}{2}+\sum(-1)^{k-1} \frac{B_{2 k}}{2 k!} \omega^{2 k}\right) \\
& =1-g+\sum_{k \geq 1}(-1)^{k-1} \frac{B_{2 k}}{(2 k)!} k_{2 k-1} \\
\Rightarrow c h E E=g & +\sum_{k z 1}(-1)^{k-1} \frac{B_{2 k}}{(2 k)!} K_{2 k-1} .
\end{aligned}
$$

Zama

$$
c(W)=\operatorname{xxp}\left(\sum_{k=1}^{\infty}(-1)^{k_{-1}}(k-1)!c_{k}(w)\right)
$$

Proof Both sides are multiplicative as W mo $W_{1}+W_{2}$

Suffices to assume $W=L$. $=\operatorname{rank} 1$. Write $c_{1}(L)=l$

$$
\text { We show } \begin{aligned}
1+l & =\exp \left(\sum_{k \geq 1}(-1)^{k-9}(k-1)!\frac{e^{k}}{k!}\right) \\
& =\exp \left(\sum_{k 21}(-1)^{k-1} \frac{e^{k}}{k}\right)=\exp \log (1+l)=1+l .
\end{aligned}
$$

In our case, this yields

$$
\begin{aligned}
c(\mathbb{E}) & =\exp \left(\sum_{\dot{k}=1}^{\infty}(-9)^{k-1} \frac{B_{2 k}}{(2 k)(2 k-1)} K_{2 k-1}\right) \\
& c\left(\mathbb{E}^{2}\right)=\exp \left(-\sum_{k=1}^{\infty}(-1)^{k-1} \frac{B_{2 k}}{2 k(2 k-9)} k_{2 k-9}\right) \\
\Rightarrow & c(\mathbb{E}) c\left(\mathbb{E}^{2}\right)=1 .
\end{aligned}
$$

Conclusion (Mumford relation)
(1) Hedge classes are in the span of the k's.

In particular $R^{*}\left(M_{g}\right)$ is generated by $x^{\prime} s$.
(2) $C(\mathbb{E}) \subset\left(\mathbb{E}^{2}\right)=1$.

$$
\begin{aligned}
& \Rightarrow \quad\left(1+\lambda_{1}+\lambda_{2}+\cdots+\lambda_{g}\right)\left(1-\lambda_{1}+\cdots\right)=0 \\
& \Rightarrow \quad \lambda_{g}^{2}=0 \text { over } M_{g}
\end{aligned}
$$

Tho Hodge bundle of $M g$ also extends to M_{g} with the same expression. The Mumford relations extend over \bar{M}_{g}.

Known Faots
(1) $R^{>g-2}\left(m_{g}\right)=0$ \& Jooijenga
(2) $R^{=9-2}\left(M_{g}\right)=\Phi \quad\{$ Fabor
(3) all complete subvaricties in Mg have dim $\leq g-2$

$$
(1) \Rightarrow(3)
$$

If z is complete of dimension g-l (or highor) then $\lambda_{1}{ }^{9-1} / 2 \neq 0$ since λ, is known to be ample. (Baily-Boral)

Bat $\lambda_{1} g^{g-1} \in R^{g-1}\left(M_{g}\right)=0$ by (1).

Remark $\lambda_{g} \lambda_{g-1}=0$ over $a \bar{M}_{g}$ (Fabor)
(1) irreducible $\bar{M}_{g-1,2} \xrightarrow{\pi} \bar{M}_{g}$. Check

$$
0 \rightarrow \mathbb{E}_{g-1} \longrightarrow \pi^{*} \mathbb{E}_{g} \longrightarrow 0 \rightarrow 0 \text { gives }
$$

$\pi^{*} \lambda_{g}=0$ by taking Churn oases $. \Rightarrow \pi^{*} \lambda_{g} \lambda_{g-1}=0$
(a) reducible case $i: \bar{M}_{\text {r, }} \times{\overline{M_{g}}-h_{1},}^{M_{g}}$. Check.

$$
\begin{aligned}
& c^{*} \mathbb{E}_{g}
\end{aligned}=\mathbb{E}_{h}^{(1)}+\mathbb{E}_{g-h}^{(2)} \text {. Then } \quad \begin{aligned}
& c^{*} \lambda_{g}=\lambda_{h}^{(1)} \lambda_{g-h}^{(2)} \\
& c^{*} \lambda_{g-1}
\end{aligned}=\lambda_{h}^{(1)} \lambda_{g-h-1}^{(2)}+\lambda_{h-1}^{(1)} \lambda_{g-h}^{(2)} .
$$

using the Mumford relation over $\bar{M}_{F_{i},}$ \& $\bar{M}_{g-h_{0}, r}$.

$$
\varepsilon: R^{g-2}\left(M_{g}\right) \longrightarrow \varepsilon, \quad \varepsilon(\alpha)=\int_{\bar{M}_{g}} \alpha \lambda_{g} \lambda_{g-1} \text { wol_defmed. }
$$

$$
\frac{\text { Math } 2203-2021}{\text { Marah } 10,20 \text { eoture } 18}
$$

So. Last tone
Hodge Bundles The moduli spaces Mg, Ag, Jg carry Hodge bundles

$\mathbb{E}_{g}{ }^{4}$	$H^{0}\left(\Omega_{A}^{\prime}\right)$	X	L^{π}
l	\vdots	$-k$	$\mathbb{E}_{g}^{A}=g$.
A_{y}	\Rightarrow	(A, L)	A_{j}

$$
\begin{aligned}
& \lambda_{i}^{M}=c_{i}\left(\mathbb{E}_{g}^{M}\right), \quad 1 \leq i \leq g \\
& \lambda_{i}^{A}=c_{i}\left(\mathbb{E}_{g}^{4}\right), \quad 1 \leq i \leq g \\
& \lambda=c_{1}\left(\mathbb{E}_{g}^{K}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& K_{i}^{\mu}=\pi_{*} c\left(\omega_{\pi}\right)^{i+1} \\
& K_{i}^{4}=0 \\
& K_{i}^{k 3}=\pi_{*} c_{2}\left(\Omega_{\pi}\right)^{i+1}
\end{aligned}
$$

In all three cases, we defined

$$
R^{*}=\mathbb{Q}[\lambda, k] /_{\text {Relations }} .
$$

For M_{g}, we applied GRR to

$$
\pi: \zeta \longrightarrow M_{g} \text { a the trivial aboaf } \theta_{E} \text {. }
$$

(1) only k-classes are needed to generate
λ 's can be expreaered in terms of k.
(2) Mumford relation $C(\mathbb{E}) \subset\left(\mathbb{E}^{2}\right)=2$.

$$
\Leftrightarrow\left(1+\lambda_{1}+\lambda_{2}+\ldots+\lambda_{g}\right)\left(1-\lambda_{1}+\lambda_{2}-\ldots \pm \lambda_{g}\right)=1 .
$$

$$
R^{*}\left(\mu_{g}\right)=\mathbb{Q}\left[k_{1}, \ldots\right] / \text { Rolations. }
$$

Next - we apply the same idea to A_{g} \& F_{g}.

Goal - we well give an explicit description of

$$
R^{*}\left(A_{g}\right) \text { and } R^{*}\left(\mathcal{F}_{g}\right) \text {. }
$$

Over A_{g} we give two relations
(0) $\lambda_{g}=0 \quad\left\{G R R \quad \pi: x \rightarrow \mathcal{A}_{g}, O_{*}\right.$.
(2) Mumford relation \{ $G R R, \pi: x \rightarrow \mathcal{A}_{9}, z$.

Over F_{g} we give relations
(i) K-clavers are powers of $\lambda \leq G R R$

$$
\pi: x \rightarrow \mathcal{F}_{g}, \mathcal{O}_{z}
$$

(2) $\lambda^{18}=0 \curvearrowright$ an'thmatic techniques + Mumford.

Outcome

$$
-a b=l i a n R^{*}\left(A_{g}\right) \cong Q\left[\lambda_{1} \ldots \lambda_{g}\right] /\left(\lambda_{g}=0\right. \text {, Mumford relation) }
$$

$$
-k 3 \quad R^{*}\left(\mathcal{F}_{g}\right) \cong Q[\lambda] / \lambda^{18}
$$

\$1. Abolian varieties

Theorem Over Ag, we have the following

(II) Mumford relation $c(\mathbb{E}) c\left(\mathbb{E}^{2}\right)=1$.

$$
\left(1+\lambda_{1}+\lambda_{2}+\ldots+\lambda_{g}\right)\left(1-\lambda_{1}+\lambda_{2}-\ldots \pm \lambda_{g}\right)=1
$$

Proof of 目 Apply GRR to the universal family

$$
\begin{gathered}
\pi: X \longrightarrow A_{g} \text { and } O_{*} . \\
\operatorname{ch} \pi, O_{*} \underset{G R R}{=} \pi_{*}\left(\operatorname{ch} O_{*} \cdot T_{0 d d}\left(T^{\pi}\right)\right)=\pi_{*} \operatorname{Todd}\left(T^{\pi}\right) .
\end{gathered}
$$

$$
\begin{aligned}
& H^{\circ}\left(A, \Omega_{A}^{\prime}\right) \otimes O_{A} \simeq \Omega_{A}^{\prime} \Rightarrow \pi^{*} \pi_{*} \Omega_{\pi} \simeq \Omega_{\pi} \\
& \quad \Rightarrow \pi^{*} \mathbb{E} \simeq \Omega_{\pi} \Rightarrow T^{\pi} \cong \pi^{*} \mathbb{E}^{2} \cdot \\
& \quad \Rightarrow \pi_{*} \operatorname{Todd}\left(T^{*}\right)=\pi_{*} \operatorname{Todd}\left(\pi^{*} \mathbb{E}^{2}\right)=\operatorname{Todd}\left(\mathbb{E}^{*}\right) \cdot \frac{\pi_{*} 2}{0}=0
\end{aligned}
$$

$$
\pi: \mathcal{O}_{*}=\sum_{k=0}^{g}(-1)^{k} R^{k} \pi_{k} O_{x}=O-F+\Lambda^{2} F-\Lambda^{3} F+\ldots
$$

where $R^{\prime} \pi_{*} O_{*}=F . \rightarrow A_{g} \operatorname{ran} k g$.
Then $\quad R^{k} \pi{ }_{n}=O_{x}=\Lambda^{k} F$.
because $H^{k}(A, O)=\Lambda^{k} H^{\prime}(A, O)$. for any abolian variety A.

$$
\Rightarrow \quad \operatorname{ch}\left(O-F+\Lambda^{2} F-\Lambda^{3} F+\cdots\right)=0 \quad(*) \text {. }
$$

Key formula
$c h \Lambda_{-1} w^{2}=c_{\operatorname{top}}(w) \operatorname{Todd}(w)^{-1} \Rightarrow$

Proof
Both sides are multiplicative $W \rightarrow W_{1}+W_{2}$. For $\angle H 5$, rok

$$
\Lambda_{-} w=\Lambda_{-} w, \otimes \Lambda_{-}, w_{2} \Leftrightarrow \Lambda^{k} w=\bigoplus_{i+j=k} \wedge^{i} w_{1} \otimes \wedge^{j} w_{2}
$$

Thus ch $\Lambda_{-1} w=c h \Lambda_{-1} W_{1}$. ch $\Lambda_{-1} W_{2}$. The right hand side:

$$
c_{\text {top }}(w)=c_{\text {top }}\left(w_{1}\right) c_{\text {top }}\left(w_{2}\right), \quad \operatorname{Todd}(w)=\operatorname{Todd}\left(w_{1}\right) \operatorname{Todd}\left(w_{2}\right)
$$

By splitting principle we may assume $W=2$.,,$\quad(L)=1$.

$$
\Lambda_{\rightarrow}, L^{2}=0-L^{v} \Rightarrow
$$

$\operatorname{ch} \Lambda_{-}, L^{2}=1-e^{-l}=l \cdot\left(\frac{l}{1-e^{-e}}\right)^{-9}=c_{\text {top }}(L) \cdot \operatorname{Todd}(L)^{-1}$

By $(*)$ we obtain $\quad c g(\mathbb{F}) \operatorname{Todd}\left(\mathbb{F}^{-1}=0 \Rightarrow c_{g}\left(\mathbb{F}^{-}\right)=0\right.$.

Remark $k \quad Z_{0} t: A \longrightarrow A^{t}$. Then $2^{*} F=E^{v}$. Indeed

$$
H^{\prime}(A, O)^{v}=H^{0}\left(A^{t}, \Omega_{A t}^{\prime}\right)
$$

This can be seen writing

$$
\begin{aligned}
& A=V / r, A^{t}=V^{t} / r^{t}, \quad V^{t}=H / 0 m \text { anti }(V, \mathbb{C}) . \\
& H^{\prime}\left(A, O_{A}\right)=V^{t} \\
& H^{0}\left(A^{t}, \Omega_{A^{t}}\right)=V^{t} .
\end{aligned}
$$

Then $c_{\text {top }}(\mathbb{F})=0 \Rightarrow c_{\text {top }}(E)=0 \Rightarrow \lambda_{g}=0$

The inumford Rolation $G R R$ to universal polarizaton α.

$$
\begin{array}{ll}
x, z & \text { zot z: } A_{g} \longrightarrow X \text { bo tho zero rection. } \\
1 & w<06 \quad z / z \cong O_{2}
\end{array}
$$

Glaim $\pi!Z^{\otimes n}=\pi!Z \otimes R$ when R reator ipace of dim n ? $\xrightarrow{2}$ over a friste cover of A_{g}.

$$
\Rightarrow \pi_{*} z^{n}=\pi_{*} \mathcal{Z} \otimes R .
$$

(Bon Moonen, Chp 13)

GRR computation

$$
\pi: Z^{n}=\pi!Z \otimes R \quad \operatorname{dim} R=n^{9} .
$$

$$
\begin{aligned}
& \text { - } \alpha \text { principal } \Rightarrow h^{0}(A, z)=1, h^{\prime}(A, z)=0 * i>0 \text {. } \\
& \Rightarrow \pi!\mathcal{\alpha}=\pi_{*} \mathcal{\alpha} .=h_{n=} \text { bundle } \\
& \Rightarrow c,(\pi, \mathcal{Z})=\theta \Rightarrow c h \pi, \mathcal{Z}=e^{+} .
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{ch} \pi!\mathcal{Z}^{n}=n^{9} \quad \operatorname{ch} \pi!\mathcal{Z}=n^{9} e^{\theta} \quad \quad c,(\mathcal{Z})=l . \\
& / / G R R \\
& \pi_{*}\left(\operatorname{ch} z^{n} . \operatorname{Todd}\left(T^{\pi}\right)\right)=\pi_{*}\left(e^{n t} \cdot \pi^{*} \operatorname{Todd}\left(\mathbb{E}^{2}\right)\right) \\
& =\pi_{*}\left(e^{n l}\right) . \operatorname{Todd}\left(\mathbb{E}^{2}\right) \text {. } \\
& \Rightarrow \quad \pi *\left(\sum_{k \geq 0} \frac{n^{g+k} l^{g+k}}{(g+k)!}\right) \cdot \operatorname{Todd}\left(E^{k}\right)=n^{g} e^{\theta} \quad \forall n \\
& \Rightarrow \quad \pi_{*}\left(\frac{l^{g+k}}{(g+k)!}\right) \cdot T_{0} d d\left(E^{2}\right)=0 \text { for } k \neq 0 \\
& \underbrace{\pi_{*}\left(\frac{l^{g}}{g!}\right)}_{1} \operatorname{Todd}\left(\mathbb{E}^{2}\right)=\tau^{\theta} \text { for } k=0 \\
& \Rightarrow \text { Todd EV }=e^{\theta} \text {. }
\end{aligned}
$$

$z=t \alpha, \ldots, \sigma_{g} \quad$ the roots of E^{2}.

$$
\begin{aligned}
& \Rightarrow \prod_{j} \frac{\alpha_{j}}{1-e^{-\alpha_{j}}}=e^{\theta} \Rightarrow \pi\left(1+\frac{\alpha_{j}}{2}+\cdots\right)=e^{\theta}=1+\theta+\frac{\theta^{2}}{2}+\cdots \\
& \Rightarrow \theta=\sum \alpha_{j} / 2 . \Rightarrow T_{j} \frac{\alpha_{j}}{1-\tau^{-\alpha_{j}}}=e^{\sum_{j} \alpha_{j} / 2}
\end{aligned}
$$

$$
\Rightarrow \prod_{j}^{1} \frac{\alpha_{j}}{\underbrace{e^{\alpha_{j / 2}}-e^{-\alpha_{j} / 2}}_{\text {even function in } \alpha_{j}}}=1
$$

\Rightarrow all power sums in α_{j}^{2} are zero
$\Rightarrow a l l$ = lementary symm. functions in α_{j}^{2} are zero

$$
\Rightarrow \prod_{j}\left(1-\alpha_{j}^{2}\right)=1 \Rightarrow c(\mathbb{E}) c\left(\mathbb{E}^{2}\right)=\pi\left(1+\alpha_{j}\right)\left(1-\alpha_{j}\right)=1
$$

\Rightarrow Mumford relation.

$$
\begin{aligned}
& \text { The ring } R_{g} \text { Define } \\
& R_{g}=\mathbb{Q}\left[u_{0} \ldots u_{g}\right]_{\text {Mumford }}\left(1+u_{1}+\ldots+u_{g}\right)\left(1-u_{j}+u_{2}-\ldots\right) \Rightarrow \\
& \text { Not } R_{g} / u_{g} \cong R_{g-1} \\
& W=0 \text { obtain } R_{g-1} \longrightarrow R^{*}\left(A_{g}\right) . \text { surjective } \\
& u_{i} \longrightarrow \lambda_{i}
\end{aligned}
$$

Theorem A this is an 1 som. $R^{*}\left(A_{g}\right) \cong R_{g-1}$
Moreover, $R^{*}(A,)^{\prime}$ satisfies Poincare' duality.

$$
\text { Theorem } B \quad \lambda_{0}{ }^{\operatorname{grg-i)/2}} \neq 0 \text { in } \mathcal{A g}_{g} \text {. }
$$

Proof of Thm A
Gonoider tho ring $R_{g}=\mathbb{B}\left[u_{1} \ldots u_{g}\right] /$ numford .

$$
\left(1+u_{1}+u_{2}+\cdots+u_{g}\right)\left(1-u_{1}+u_{2}-\ldots \pm u_{g}\right)=1 . \quad(*)
$$

$\underline{\text { Cla, } \dot{m}} \quad u_{k}^{2} u_{k+1} \ldots u_{g}=0$

Inderd, fom (x) we find $u_{g}{ }^{2}=0$.
$A / s_{0} \quad u_{g-1}^{2}-2 u_{g} u_{g-2}=0 \Rightarrow u_{g-1}^{2} u_{g}-2 \frac{u_{g}^{2} u_{g-2}}{0}=0$

$$
\Rightarrow u_{g-1}{ }^{2} u_{g} .
$$

Tonknue induchvely.

Glaim U_{ε} gonorate R_{g} as a Q -vector space.
where $\quad u_{\varepsilon}=u_{1} \varepsilon_{1} u_{2}^{\varepsilon_{2}} \ldots u_{g}^{q_{g}}, \varepsilon_{j} e\{0, j\}$

We ind uot on g. $17 \quad r \in R_{g}$, then

$$
r=\text { =H in } R_{g-1}+u_{g}=H R_{g-1}+z_{g}^{k} \cdot H \text { in } R_{g-1}+\ldots
$$

\& apply induction.

Claim U_{ε} give a basis of R_{g} as Q -vector space.

Aksum= $\sum_{\varepsilon} a_{\varepsilon} u_{\varepsilon}=0$. Order ε^{\prime} lexicographically.
, 9 9-1 $\cdots k \ldots \ldots 1$
Thus $\varepsilon^{\prime} \geq \varepsilon \Leftrightarrow \quad \varepsilon^{\prime}=* \quad \ldots \quad 1 \ldots$.

$$
\varepsilon=* \quad * \quad \cdots \quad 0 \quad \ldots
$$

Define $\varepsilon^{1}=(1,1, \ldots 1)-\varepsilon . \quad 17 \varepsilon^{\prime}>\varepsilon$ then $u_{\varepsilon^{\prime}} u_{\varepsilon^{\prime}}=0$.
Indeed, $\quad 9 \quad 9-1 \quad \ldots k \quad \ldots .1$

$$
\varepsilon^{\prime}=* \quad * \quad \cdots 1
$$

$$
\varepsilon=* \quad * \quad \cdots \quad 0
$$

$$
\begin{aligned}
& \Sigma^{L}=1-* \quad 1-* \cdots c_{1} \\
& =u_{g} \cdots u_{k+1} u_{k}^{2} \cdots=0 . \quad \text { while }
\end{aligned}
$$

$$
u_{\varepsilon} u_{\Sigma}{ }^{\prime}=u_{1} \ldots u_{g} . \neq 0 \text { (sse bolow). Now if } \sum_{\varepsilon} a_{z} u_{\varepsilon}=0
$$

let ε be the smalls such that $a_{\Sigma} \neq 0$. From

$$
\sum_{\Sigma^{\prime}} a_{\varepsilon^{\prime}} u_{\Sigma^{\prime}}=0 \Rightarrow \sum_{\varepsilon^{\prime} \geq \varepsilon} a_{\varepsilon^{\prime}} \underbrace{}_{0 \text { if } \varepsilon^{\prime} u_{\varepsilon^{\prime}}}=0 \Rightarrow \varepsilon_{\varepsilon}=0 \text { false! }
$$

Thus u_{Σ} gives a basis for R_{g}.
ζ lain $u_{1} \ldots u_{g} \neq 0$ in R_{g}.

Indeed grade Ry via deg $u_{i}=i$. Then $R_{g}=\bigoplus R_{g}^{d}$ and since $u_{1}^{\varepsilon_{1}} \ldots u_{g}^{\varepsilon_{g}}$ generators $\Rightarrow d \leq 1+2+\ldots+g=\frac{g(g+1)}{2}$

$$
0 \leq \varepsilon_{i} \leq 1
$$

Furthermore for $d=\frac{g(g+1)}{2}, R_{g}^{d}$ is spanned by $u_{,} \ldots u_{g}$. If $u_{1} \ldots u_{g}=0 \Rightarrow R_{j}^{d}=0 \Rightarrow u_{1} \frac{g(g+1)}{2}=0$. But $R_{g} \rightarrow R^{*}\left(A_{g+1}\right.$ $\Rightarrow \lambda_{1}^{\frac{g(g+1)}{2}}=0$ contradicting The B.

Claim Pg satisfies Poincare' duality.
Indeed in the basis \{ $\left.u_{z}\right\}$, the product is given by an invertible triangular matrix. since.

$$
\begin{aligned}
u_{\varepsilon^{\prime}} \cdot u_{\Sigma} L & =0 \text { if } \varepsilon^{\prime}>\varepsilon \\
& \neq 0 \text { if } \varepsilon^{\prime}=\varepsilon
\end{aligned}
$$

Claim $R_{g-1} \longrightarrow R^{*}\left(A_{g}\right)$ is an isomorphism.

$$
u_{\varepsilon} \quad \longrightarrow \lambda_{\varepsilon}
$$

Define $\quad \lambda_{\Sigma}=\lambda_{1}^{\varepsilon_{1}} \ldots \lambda_{j-1}^{\varepsilon_{j-1}}, \quad 2, \in\{0, \cdot\}$
x_{c} is also a basis for $R^{*}\left(A_{g}\right)$ by exactly the same argument
as above. (The B holds for $R^{*}\left(A_{j}\right)$ and this is all we used).
Thus the above is an isomorphism.

$$
\frac{\text { Math } 2203-\text { Zeoture } 19}{\text { Maroh } 12,2021}
$$

Last tome

$$
\begin{aligned}
& R_{g}=\mathbb{Q}\left[u_{1} \ldots u_{g}\right] / \text { Mumford relation } \\
& \left(1+u_{g}+u_{2}+\ldots+u_{g}\right)\left(1-u_{1}+u_{2}-\ldots \pm \pm u_{g}\right)=1 .
\end{aligned}
$$

Pg vatiofer Poincare' duo lith

$$
R^{*}\left(A_{g}\right) \cong R_{g-1}
$$

- only used Mumford relation \& Theorem B:

$$
\lambda_{1} \frac{g(g-1)}{2} \neq 0 \text { in } R^{*}\left(A_{g}\right) \text {. }
$$

Remark Recall the Lagrangian Grasomannian $L G\left(g, \Phi^{2 g}\right.$.
$\angle G=\left\{\Lambda \subseteq \mathbb{C}^{2 g}\right.$, dim $\Lambda=9, \Lambda$ Lagrangian $\}$.

7 sequence over < 4 .

$$
0 \longrightarrow S \longrightarrow \sigma^{2 g} 0 \longrightarrow Q \longrightarrow 0
$$

\Rightarrow using the symplectic form $Q \cong S^{2}$. Since

$$
c(s) c(Q)=1 \quad \Rightarrow c(Q) c\left(Q^{2}\right)=0
$$

Zof $u_{i}=c_{i}(Q)$. The scubaing in $H^{*}(L 6)$ generated by u_{i} satiofer $u_{1} \frac{g(g+1)}{2} \neq 0$ so it is isomorphic to $\mathcal{R g}_{g}$.

In fact $\operatorname{dim} H^{*}(L G)=2^{9}$ a dim $R_{j}=2^{9}$ so

$$
H^{*}(L G)=A^{*}(L G) \cong R_{g} .
$$

Thm $B \quad \lambda_{1}^{g(g-1) / 2} \neq 0$ in $\mathrm{CH}^{*}\left(\mathrm{Ag}_{\mathrm{g}}\right)$.

Proof of thm B (sketch) wTs $\lambda, \frac{g(g-2)}{2} \neq 0$
(2) λ, is ample /ब by Baily - Borel \&
Char p by Baily - Mool
(3) Find $z \subset \mathcal{A}_{g} \otimes \pi_{p}$

- alimonsion $\frac{g(g-1)}{2}$ Kooblitz
- complet

Oort

Thon $\lambda_{1} \frac{g(g-1)}{2} / 2 \neq 0 \Rightarrow \lambda_{1} \frac{g(g-1)}{2} \neq 0$.

What is 2?

$$
\begin{aligned}
& \text { Recall } A \text { abelian variaty/ } \mathbb{A} \text { thon } \\
& n: A \longrightarrow A, A[n]=K_{e r r} \Rightarrow A[n]=n^{2 g} .
\end{aligned}
$$

A abvlian varicty in char $=\rho$

This fails for $n=p$.
A / F_{p} has p-rank 0 if $A \otimes \overline{F_{p}}$ has no nontivial
p-torsion points.

$$
Z=\{A: p-\operatorname{rank} \text { of } A=0\} \longleftrightarrow A_{g} \otimes \mathbb{F}_{p} \text {. }
$$

Complete subvaricties in char 0 .

$$
\begin{aligned}
& \text { Nof } \lambda, \frac{g(g-1)}{2}+1=0 \text { in } R_{g-1} \cong H^{*}\left(L \varepsilon_{g-1}\right) \\
& \text { If } z \text { complet subuarivty of } A_{g} \text { of } \operatorname{dim}=\frac{g(g-1)}{2}+1 . \\
& \quad \lambda_{1} \frac{g(g-1)}{2}+1 / z=0 . \text { contradioting amploness of } \lambda_{1} . \\
& \Rightarrow \operatorname{dim} z \leq \frac{g(g-0)}{2} .
\end{aligned}
$$

Oort's Corjeoture

$$
\operatorname{dim} z<\frac{g(g-1)}{2} \quad \forall 2 c A_{g} \text { complot. }
$$

Solvod by Sudan \& Korl.

$$
\begin{aligned}
& \underline{\delta 1 . K 3 \text { surfaces }} \\
& t=c_{2}\left(T^{\pi}\right) \quad \pi: x \longrightarrow \mathcal{F}_{g} . \quad \lambda=c,(\mathbb{E}) \\
& K_{n}=\pi_{*} t^{n+1} \\
& R^{*}\left(\mathcal{F}_{g}\right)=\mathbb{Q}[\lambda, k] / R_{0} / a t i o n \sigma \quad \cong \mathbb{Q}[2] / R_{0} / a t i o n
\end{aligned}
$$

Theorem (van der Goer, Katsura)

$$
K_{n}=a_{n} \lambda^{2 n} \text { whore } \sum_{n=0}^{\infty} a_{n} x^{n}=24+88 x+184 x^{2}+\cdots
$$

Proof $G R R$ to $\pi: X \longrightarrow F_{j}$ and O_{x}.

$$
\begin{aligned}
\operatorname{ch} \pi_{:} \theta_{x} & =\pi_{*}\left(\operatorname{ch} \theta_{x} \cdot \operatorname{Todd}\left(T^{\pi}\right)\right) \text { aR } \\
& =\pi_{*}\left(T_{0} d d T^{\pi}\right) .
\end{aligned}
$$

$$
\pi!\mathcal{O}_{*}=\mathcal{O}_{\mathcal{F}}+\mathbb{E}^{2} \text { 就 } r_{1}, r_{2} \text { be the roots of } T^{\pi}
$$

$$
\Rightarrow 1+e^{-\lambda}=\pi_{*}\left(\frac{r_{1}}{1-e^{-r_{0}}} \cdot \frac{r_{2}}{1-e^{-r_{2}}}\right) .
$$

$$
\begin{aligned}
& r_{1}+r_{2}=c_{1}\left(T^{\pi}\right)=-c,\left(K_{\pi}\right)=-\pi^{*} \lambda . \\
& r_{1} r_{2}=c_{2}\left(T^{\pi}\right)=t \\
& 1+e^{-\lambda}=\pi_{*}\left(\frac{r_{1}}{1-e^{-r_{1}}} \cdot \frac{r_{2}}{1-e^{-r_{2}}}\right) . \\
& \text { Write } \frac{r_{0}}{1-e^{-r_{1}}} \cdot \frac{r_{2}}{1-e^{-r_{2}}}=\sum_{j \leq n / 2} c_{n, j}\left(r_{1}+r_{2}\right)^{n-20^{j}}\left(r_{1} r_{2}\right)^{j} \\
& =\sum_{j \leq n / 2} c_{n, j}(-1)^{n} \pi^{*} \lambda^{n-2 j^{j}} \cdot t^{j} \\
& \Rightarrow \quad \pi_{*}\left(\frac{r_{1}}{1-e^{-r_{1}}} \cdot \frac{r_{2}}{r-c^{-r_{2}}}\right)=\sum_{j \leq n / 2} c_{n, j}(-1)^{n} \lambda^{n-2 j} \cdot K_{j-1} . \\
& \text { Conf of } \lambda^{2 m-2} y i e / d s \\
& \sum_{j \leq m} c_{2 m, j} \lambda^{2 m-2 j} k_{j-1}=\frac{\lambda^{2 m-2}}{(2 m-2)!}
\end{aligned}
$$

We establish the theorem by induction. If we know $K_{0}, \ldots . K_{m-2}$. are of the form const $\times \lambda^{3}$ we solve for K_{m-1} to conclude. We need $C_{2 m, m} \neq 0$.

$$
\begin{aligned}
& \text { Claim } C_{2 m, m} \neq 0 \quad s_{2} \quad r_{0}=r, r_{2}=-r \\
& \frac{P_{r o o f}}{1-e^{-r}} \cdot \frac{-r}{1-e^{r}}=\sum_{m} c_{2 m, m} r^{2 m}(-1)^{m} \\
& \left(1+\frac{r}{2}+\sum_{k \geq 1}(-1)^{k-1} \frac{B_{2 k}}{(2 k)!} r^{2 k}\right)\left(1-\frac{r}{2}+\sum_{k 20}(-1)^{k-1} \frac{B_{2 k}}{(2 k)!} r^{2 k}\right) \\
& \Rightarrow c_{2 m, m}=\sum_{i+j j}=m \frac{B_{2 i}}{(2 i)!} \cdot \frac{B_{2 j}}{(2 j)!} \neq 0 .
\end{aligned}
$$

Question Gan this method yield result over other
moduli spaces?

Enrigurs ...
Bielliptics ...

Outcome $e^{*}\left(\sigma_{g}\right)=\mathbb{Q}[\lambda] /$ Relation.

Theorem (van der Gear, Katsura).

$$
R^{*} \tilde{F}_{g}=\mathbb{B}[\lambda] / \lambda^{18}=0 . \Rightarrow \text { Poincare' duality. }
$$

Sk=toh of Proof
(1) $\quad \lambda^{17} \neq 0$. Suffices to exhibit $\& C J_{g}$
complete of dim 17. This is beanie $\bar{F}_{g} \hookrightarrow{\overline{\mathcal{F}_{g}}}^{B B} \hookrightarrow \mathbb{D}^{N}$.

$$
\text { boundary is, dime. Define } z=\frac{i}{\ddagger} n H_{1} \cap H_{2} \longrightarrow f \text {. }
$$

(2) $\lambda^{18}=0$.

Let $(2, v)$ be a lattice of type $(1, r-1)$ and v promituce, $v^{2}=2 g-2$.

$$
\mathcal{F}_{(L, v)}=\left\{(x, z, j): j: L c \text { Pic }(x) \text { primitive, } \begin{array}{l}
j(v)=H \\
\text { big }+n \cdot f .
\end{array}\right.
$$

$$
\begin{aligned}
& \mathcal{F}_{(L, v)} \longrightarrow \mathcal{F}_{g} \\
& (x, H, j) \longrightarrow(x, H) .
\end{aligned}
$$

$\operatorname{dim} I_{L, v}=20-r$.
(1) Borcherds relation:

$$
\left.\lambda \cdot\right|_{I_{L, v}}=\sum_{L^{\prime} \operatorname{typ}^{\prime} p(1, r)} c_{L, L^{\prime}, v, v} I_{L^{\prime}, v^{\prime}}
$$

Induction on $r: \lambda^{19-r}=0$ on $\mathcal{F}_{L, v}$

$$
\lambda^{19-r} / F_{L, v}=\sum c \cdot \lambda^{18-r} / F_{L i v}=0 .
$$

(2) Base case $0=17<\longrightarrow(1,16)$. Want $\lambda^{2}=0$.

$$
\overline{I V}_{3} \cong \mathcal{J}_{2} \Longrightarrow F_{(L, v)} \longrightarrow \text { moduli of abolian }
$$

surfaces
(Siegol modular 3-fold)

Mumford relation: $\left(1-\lambda_{1}+\lambda_{2}\right)\left(1+\lambda_{1}+\lambda_{2}\right)=0$

$$
\Rightarrow \lambda_{1}^{2}=2 \lambda_{2}=0
$$

\{2. A richer tautological ning (2nd atternpt)

$$
\begin{array}{lll}
K_{a, b}=\pi_{*}\left(l_{.}^{a} t^{b}\right), & l & =c_{1}(\mathcal{Z})
\end{array} r \mathcal{Z}
$$

lssue $\mathcal{L} \longrightarrow \mathcal{L} \otimes \pi^{*} M$ is not unizue, $m=0,(M)$.

$$
\begin{array}{ll}
\widetilde{k}_{3,0} \longrightarrow k_{3,0}+(6 g-6) m & \pi * c,(z)^{3} \\
\widetilde{k}_{1,1} \longrightarrow k_{1,1}+24 m & \pi * c,(\alpha) c_{2}\left(T^{\pi}\right) .
\end{array}
$$

The elass $\quad \gamma=k_{30}-\frac{9-1}{4} k_{1,1}$ is canonical.
instrad. $e=c,(2)$. Work with

Botter $\bar{e}=c,(L)-\frac{1}{g+1} \pi^{*} c,\left(\pi_{*} \alpha\right) . \in A^{\prime}(*)$.

$$
\begin{array}{ll}
\bar{K}_{3,0}=\frac{2}{g+1} \gamma-\frac{g+1}{2} \lambda \quad \bar{K}_{0, b}=\pi_{*}\left(\bar{l}^{-a} \cdot t^{b}\right) . \\
\overline{k_{1,1}}=-\frac{4}{g+1} \gamma-\frac{2(g+1)}{g-1} \lambda . &
\end{array}
$$

Define $K^{*}\left(\mathcal{F}_{g}\right)=\mathbb{B}\left[\bar{K}_{a, b}\right] / R_{v}$ lations.

- codimenoion 1 it containo λ and γ.
- codimension 2

Question Flow do we find relations?

Remark

- Borcherds:
$\lambda=$ is exprooible in terms of codiml. Noether - Zufochotz classes
- Farkas - Rimanyi (2018)
$\gamma=$ is expresoible in terms of codiml. Noether - Zefochotz clasees

Proof in degree 4 (Marian - 0-2012)
$\gamma=-10 \lambda$. away foo the loci $\mathcal{P}_{0} Q, S$
Idea $(x, 2)$ is normally generated away for P, Q, s

$$
\Rightarrow \quad S_{y m}^{2} H^{0}(z) \rightarrow H^{0}\left(z^{02}\right)
$$

$$
\begin{aligned}
& \text { Noterk } H^{\circ}(z)=2+\frac{\alpha^{2}}{2}=4,-k \quad \operatorname{Sym}^{2} H^{0}(z)=10 \\
& r \text { b } H^{0}\left(z^{i}\right)=2+2 z^{2}=10 \\
& \Rightarrow \operatorname{Sym}{ }^{2} \pi_{*} Z \cong \pi_{*} \mathcal{Z}^{2} \text { over } \mathcal{F} \backslash(P \cup Q U S)
\end{aligned}
$$

Thus $c,\left(\pi_{x} z^{2}\right)=c,\left(\operatorname{Sym}^{2} \pi_{x} \alpha\right)=5 c,\left(\pi_{x} \alpha\right) . B y$

$$
\begin{aligned}
& c_{1}\left(\pi_{*} \alpha\right)=-2 \lambda+\frac{k_{1,1}}{12}+\frac{k_{3,0}}{6} \\
& c_{1}\left(\pi_{*} \alpha^{2}\right)=-5 \lambda+\frac{k_{1,1}}{6}+\frac{4}{3} k_{3,0}
\end{aligned} \Rightarrow \gamma=-10 \lambda
$$

In fact $-\gamma=\frac{22}{9} P+\frac{16}{27} Q+\frac{5}{27} S$ (see ny website)
$\Rightarrow \gamma, \lambda$ are supported on Noother zefochety. Loci

An even larger ang ($3^{\text {rd }}$ attempt)

$$
\begin{aligned}
& \text { - } N L^{*}\left(\mathcal{F}_{g}\right)=\text { ring generated by }\left[\mathcal{F}_{(L, v)}\right] \text {. } \\
& \text { - } R^{*}\left(\mathcal{F}_{g}\right)=\text { ring generated by k-dasoes } \\
& R_{\text {a, }} \text {... ar, } b \text { fom all NL - looi }
\end{aligned}
$$

\bar{f}_{x} basis $v_{1} \ldots v_{r}$ of $L . \stackrel{j}{\leadsto} \mathcal{H}_{1} \ldots \mathcal{H}_{r} \rightarrow \mathcal{X}_{L}$ $\downarrow \pi$ $F_{L} v$.
D.fne

$$
k_{a, \ldots \text { ar } b}=\eta_{*}^{\pi_{*}}\left(c_{1}\left(\overline{H_{1}}\right)^{a_{r}} \ldots c_{1}\left(\bar{H}_{r}\right)^{a_{r}} c_{2}\left(T_{\pi}\right)^{b}\right) \text {. }
$$

Glearly $N L^{*} \hookrightarrow R^{*}$.

Congeoture $\mathrm{NL}^{*}=R^{*} \quad$ (version of a oongeotue in Marian-0-- Pandharipande.

Remark \exists different normalization $\bar{\alpha}$ (Pandharipande-- Yin.)

$$
\begin{aligned}
& \bar{\alpha}=\frac{1}{N}=v_{N}\left[\bar{m}_{0,},(x / f, z)\right]^{n d} \in A^{n}(x) . \\
& N=\int^{\left[\bar{m}_{i 0}(x, L)\right]^{n d}}
\end{aligned}
$$

With the new normalization $\bar{R}^{*}\left(F_{g}\right)$. It differs for
$R^{*}(F g)$ only in codim 18 \& 19 because the difference between \bar{z} and \bar{l} is in general NL unless $+k L \geq 18$.

$$
\text { Why? Pic }\left(F_{L}\right)=N L^{1}\left(F_{L}\right) \text { if } k L \geq 18
$$

Question 15 it true that $R^{18}=R^{19}=0$?

Theorem (Petersen) True in cohomology.

$$
R H^{18}=R H^{19}=0 \text {. }
$$

Thus $R^{*} H=\bar{R}^{*} H$ and $R^{*}=\bar{R}^{*}$ conjecturally.

Theorem (Pandharipande-Yin).

$$
\overline{R^{*}} \cong N L^{*} . \quad R^{*} \cong N L^{*} \text { in cohomology }
$$

Gondusion Many Open Questions.

