Name: ____________________________

Student ID: ________________________

Section time: ______________________

Instructions:

Please print your name, student ID and section time.

During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most half a page, front and back.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 5 questions which are worth 45 points. You have 50 minutes to complete the test.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>
Problem 1. [7 points.]

Find the volume of the region bounded above by the elliptic paraboloid \(z = 4 - x^2 - 3y^2 \), on the bottom by the \((x, y)\)-plane, on the sides by the planes \(x = 0 \), \(x = 1 \), \(y = -1 \) and \(y = 1 \).
Problem 2. [9 points.]

Find the critical points of the function

\[f(x, y) = x^3 + 6xy + 3y^2 - 9x \]

and determine their nature.
Problem 3. [8 points.]

Let \(z = f(x, y) \) where \(f \) is a function such that
\[
\frac{\partial f}{\partial y} = x - 2y.
\]
It is furthermore known that
\[
\frac{\partial f}{\partial x}(4, 3) = 2.
\]
Assume that
\[
x = \frac{u^2}{v}, \quad y = 2uv - v^2.
\]
Calculate the derivative
\[
\frac{\partial z}{\partial v}
\]
at the point \(u = 2 \) and \(v = 1 \).
Problem 4. [9 points.]

Find the minimum and the maximum value of the function

\[f(x, y) = x^2 + 2y^2 - 6x + 2 \]

along the ellipse

\[2x^2 + y^2 = 8. \]
Problem 5. [12 points; 3, 2, 3, 4.]

Consider the function
\[f(x, y) = x^2 y^4 + xy^2 \ln(2x - y). \]

(i) Find the direction of steepest increase for the function \(f \) at the point \((1,1)\).

(ii) Find the directional derivative \(D_{\vec{v}} f(1,1) \) in the direction \(\vec{v} = \frac{1}{\sqrt{2}} \vec{i} - \frac{1}{\sqrt{2}} \vec{j} \).
(iii) Find the tangent plane to the graph of \(f \) at the point \((1, 1, 1)\).

(iv) Find the tangent plane to the level surface \(z^2x^3 - f(x, y) = 0 \) at the point \((1, 1, 1)\).