
Problem 1.

Evaluate by changing the order of integration∫ 1

0

∫ 1

√
y

ex
3

dx dy.

Solution:We change the order of integration over the region

0 ≤ √y ≤ x ≤ 1.

We find

0 ≤ y ≤ x2, 0 ≤ x ≤ 1.

and ∫ 1

0

∫ x2

0

ex
3

dy dx =

∫ 1

0

x2ex
3

dx =
1

3
ex

3

|x=1
x=0 =

1

3
(e− 1).
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Problem 2.

Find the critical points of the function

f(x, y) = xy2 − 4xy +
1

2
x2

and determine their nature.

Solution:We calculate

fx = y2 − 4y + x, fy = 2xy − 4x = 2x(y − 2).

Since

fy = 0 =⇒ x = 0 or y = 2.

When x = 0 we obtain from

fx = 0 =⇒ y2 − 4y = 0 =⇒ y = 0 or y = 4.

When y = 2 we find

fx = 0 =⇒ x = 4.

There are three critical points (0, 0), (0, 4) and (4, 2).

We find the second derivatives

fxx = 1, fxy = 2y − 4, fyy = 2x.

At the points where x = 0, the determinant of the hessian is

D = fxx · fyy − f2xy = 1 · 0− (2y − 4)2 < 0

hence both (0, 0) and (0, 4) are saddle points. For (4, 2), the determinant of the Hessian is

fxx · fyy − f2xy = 1 · 8− 02 > 0

hence (4, 2) is a local minimum.



Problem 3.

Consider the function

f(x, y) =
2x2y

x4 + y2
.

(i) Show that the limit

lim
(x,y)→(0,0)

f(x, y)

along any line of fixed slope m through the origin equals 0.

(ii) Evaluate the limit lim(x,y)→(0,0) f(x, y) along the parabola y = x2.

(iii) What is the value of the limit lim(x,y)→(0,0) f(x, y)?

Solution:

(i) We have y = mx and

f(x, y) =
2x2(mx)

x4 + (mx)2
=

2mx

x2 +m2
→ 0

m2

provided x → 0. Thus f(x, y) → 0 along the line y = mx provided m 6= 0. When m = 0, we have

y = 0 and f(x, y) = 0.

(ii) When y = x2, we have f(x, y) = 2x2y
x4+y2 = 1, so the limit equals 1.

(iii) Since the answers in (i) and (ii) are different, the limit does not exist.



Problem 4.

Consider the function

f(x, y) =
√

6− x2 − y2.

(i) Find the direction of steepest increase of f at the point P (1, 2).

(ii) Draw the graph of the function f .

(iii) Find the directional derivative D~vf(1, 2) in the direction ~v = 3
5
~i− 4

5
~j.

(iv) Find the linear approximation f((1, 2) + .01 · ~v).

(v) Find the tangent plane to the surface

z2x+ zf(x2, y) = 2

at (1, 2, 1).

Solution:

(i) We have

fx =
1

2
· −2x√

6− x2 − y2
= − x√

6− x2 − y2
=⇒ fx(1, 2) = −1.

Similarly,

fy = − y√
6− x2 − y2

=⇒ fy(1, 2) = −2.

Thus ∇f = (−1,−2) and the direction of steepest increase is (−1,−2).

(ii) The graph is

z = f(x, y) =
√

6− x2 − y2 =⇒ x2 + y2 + z2 = 6, z ≥ 0

which is the half sphere of radius
√

6.

(iii) We have

D~vf = ∇f · v = (−1,−2) · (3/5,−4/5) = 1.

(iv) We evaluate

f((1, 2) + .01~v) ≈ f(1, 2) + .01 ·D~vf = 1 + .01 · 1 = 1.01.

(v) We have

g(x, y, z) = z2x+ zf(x2, y)

hence

gx = z2 + 2zxfx(x2, y) =⇒ gx(1, 2, 1) = 1 + 2(−1) = −1

gy = zfy(x2, y) =⇒ gy(1, 2, 1) = 1(−2) = −2

gz = 2zx+ f(x2, y) =⇒ gz(1, 2, 1) = 3.

The normal vector is (−1,−2, 3) hence the plane is

−x− 2y + 3z = −2.



Problem 5.

Find the minimum and the maxim value of the function

f(x, y, z) = 2x− 2y + z

along the sphere of center (1, 0,−1) and radius 3.

Solution:We have

g(x, y, z) = (x− 1)2 + y2 + (z + 1)2 = 9.

We need

∇f = λ∇g

which gives

(2,−2, 1) = 2λ(x− 1, y, z + 1) =⇒ x− 1 =
2

2λ
, y =

−2

2λ
, z + 1 =

1

2λ
.

Using

(x− 1)2 + y2 + (z + 1)2 = 9 =⇒
(

2

2λ

)2

+

(
− 2

2λ

)2

+

(
1

2λ

)2

= 9 =⇒ 2λ = ±1.

When 2λ = 1 we find the point

(3,−2, 0) with f(3,−2, 0) = 10.

When 2λ = −1 we find the point

(−1, 2,−2) with f(−1, 2,−2) = −8.



Problem 6.

Find the area of the region bounded in the first quadrant by the hyperbola xy = 1 and the parabolas

x = y2 and x = 8y2. Express the answer in the simplest possible form.

Solution:The intersection of the parabola x = y2 and the hyperbola xy = 1 occurs at (1, 1). The

intersection of the parabola x = 8y2 and the hyperbola xy = 1 is the point (2, 12 ). The integral is to be split

into two regions. For the region 0 ≤ x ≤ 1, we have

ymin =

√
x

8
, ymax =

√
x.

For the region 1 ≤ x ≤ 2, we have

ymin =

√
x

8
, ymax =

1

x
.

We calculate

Area =

∫ 1

0

∫ √x
√
x/8

dy dx+

∫ 2

1

∫ 1/x

√
x/8

dy dx

=

∫ 1

0

√
x−

√
x

8
dx+

∫ 2

1

1

x
−
√
x

8
dx

=
2

3
x3/2(1− 1√

8
)|x=1
x=0 + lnx|x=2

x=1 −
2

3

x3/2√
8
|x=2
x=1 = ln 2.



Problem 7.

Find the average value of the function

f(x, y, z) = xyz

over the first octant

x ≥ 0, y ≥ 0, z ≥ 0

of the ball x2 + y2 + z2 ≤ 1.

Solution:We use spherical coordinates. We have

f̄ =
1

volume

∫ ∫ ∫
xyz dV.

Thus

f̄ =
1

4π/3 · 1/8

∫ 1

0

∫ π
2

0

∫ π
2

0

(ρ sinφ cos θ)(ρ sinφ sin θ)(ρ cosφ)(ρ2 sinφ) dρ dφ dθ

=
6

π

∫ 1

0

∫ π
2

0

∫ π
2

0

ρ5 sin3 φ cosφ cos θ sin θ dρ dφ dθ

=
6

π

∫ 1

0

ρ5 dρ ·
∫ π

2

0

sin3 φ cosφdφ ·
∫ π

2

0

sin θ cos θ dθ

=
6

π
· ρ

6

6
|ρ=1
ρ=0 ·

1

4
sin4 φ|φ=

π
2

φ=0 ·
1

2
sin2 θ|θ=

π
2

θ=0 =
6

π
· 1

6
· 1

4
· 1

2
=

1

8π
.



Problem 8.

Using cylindrical coordinates, find the mass of the solid with density ρ = z bounded by the sphere

x2 + y2 + z2 = 2 and the cone z2 = x2 + y2.

Solution:We calculate ∫ ∫ ∫
ρ dV.

The intersection is

x2 + y2 = z2 = 1

and therefore the cylindrical coordinates satisfy

0 ≤ r ≤ 1, r ≤ z ≤
√

2− r2.

We have ∫ 2π

0

∫ 1

0

∫ √2−r2

r

z dz(r dr) dθ = 2π

∫ 1

0

1

2
z2|z=

√
2−r2

z=r r dr =

= 2π

∫ 1

0

(1− r2)r dr = 2π(
r2

2
− r4

4
)|1r=0 = 2π · 1

4
=
π

2
.



Problem 9.

Find the volume of the solid bounded by the cylinders

z = 1− y2, z = y2 − 1

and the planes x = 0 and x+ z = 1.

Solution:We calculate∫ 1

−1

∫ 1−y2

y2−1

∫ 1−z

0

dx dz dy =

∫ 1

−1

∫ 1−y2

y2−1
(1− z) dz dy =

∫ 1

−1
(z − 1

2
z2)|z=1−y2

z=y2−1 dy

=

∫ 1

−1
2(1− y2) dy = 2y − 2

3
y3|y=1

y=−1 = 4− 4

3
=

8

3
.



Problem 10.

Consider the parametric curve given by

~r(t) =

(
t4

4
,
t6

6

)
, 0 ≤ t ≤ 1.

Find the arclength parametrization of the curve.

Solution:We have

~r′(t) = (t3, t5) =⇒ ||~r′(t)|| =
√

(t3)2 + (t5)2 = t3
√

1 + t4.

The arclength function is

s(t) =

∫ t

0

||~r′(u)|| du =

∫ t

0

u3
√

1 + u4 du =
1

6
(1 + u4)

3
2 |u=tu=0 =

(1 + t4)
3
2 − 1

6
.

Solving s(t) = s we find

(1 + t4)
3
2 − 1

6
= s =⇒ t4 = (6s+ 1)

2
3 − 1.

Thus

~r(t) =

(
1

4
((6s+ 1)

2
3 − 1),

1

6
((6s+ 1)

2
3 − 1)

3
2

)
.

Finally, t = 0 corresponds to s = 0 and t = 1 corresponds to s = 1
6 (2

3
2 − 1).



Problem 11.

Assume that

w = ln(x2 − y2 + z2)

where

x = 2s+ t, y = 2s− t, z = 2
√
st.

Using the chain rule, calculate the derivative
∂w

∂s
.

Express your answer in the simplest possible form.

Solution:We have
∂w

∂s
=
∂w

∂x
· ∂x
∂s

+
∂w

∂y
· ∂y
∂s

+
∂w

∂z
· ∂z
∂s
.

We compute
∂w

∂x
=

2x

x2 − y2 + z2
=

2(2s+ t)

(2s+ t)2 − (2s− t)2 + 4st
=

2(2s+ t)

12st
=

2s+ t

6st
.

Similarly
∂w

∂y
= − (2s− t)

6st

∂w

∂z
=

4
√
st

12st
=

1

3
√
st
.

Next,

∂x

∂s
= 1,

∂y

∂s
= 1,

∂z

∂s
= 2 · 1

2
√
s
·
√
t =

√
t

s
.

Therefore

∂w

∂s
=

(2s+ t)

6st
· 2 +

−(2s− t)
6st

· 2 +
1

3
√
st
·
√
t

s
=

4t

6st
+

1

3s
=

1

s
.



Problem 12.

The ellipsoid x2 + 2y2 + z2 = 4 and the plane 2x+ y + 3z = 6 intersect in an ellipse passing through the

point (1, 1, 1). Find the parametrization of the tangent line to the ellipse at (1, 1, 1).

Solution:The normal vector to the ellipsoid is ~n1 = (2x, 4y, 2z) which gives at (1, 1, 1) the vector

~n1 = (2, 4, 2).

The normal vector to the plane is

~n2 = (2, 1, 3).

The vector tangent to the ellipse is perpendicular to both ~n1 and ~n2 hence

~t = ~n1 × ~n2 = (2, 4, 2)× (2, 1, 3) = (10,−2,−6).

The tangent line is

(1, 1, 1) + t(10,−2,−6).


