Problem 1.

Evaluate by changing the order of integration

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y
$$

Solution: We change the order of integration over the region

$$
0 \leq \sqrt{y} \leq x \leq 1
$$

We find

$$
0 \leq y \leq x^{2}, 0 \leq x \leq 1
$$

and

$$
\int_{0}^{1} \int_{0}^{x^{2}} e^{x^{3}} d y d x=\int_{0}^{1} x^{2} e^{x^{3}} d x=\left.\frac{1}{3} e^{x^{3}}\right|_{x=0} ^{x=1}=\frac{1}{3}(e-1)
$$

Problem 2.

Find the critical points of the function

$$
f(x, y)=x y^{2}-4 x y+\frac{1}{2} x^{2}
$$

and determine their nature.

Solution: We calculate

$$
f_{x}=y^{2}-4 y+x, f_{y}=2 x y-4 x=2 x(y-2)
$$

Since

$$
f_{y}=0 \Longrightarrow x=0 \text { or } y=2
$$

When $x=0$ we obtain from

$$
f_{x}=0 \Longrightarrow y^{2}-4 y=0 \Longrightarrow y=0 \text { or } y=4
$$

When $y=2$ we find

$$
f_{x}=0 \Longrightarrow x=4
$$

There are three critical points $(0,0),(0,4)$ and $(4,2)$.
We find the second derivatives

$$
f_{x x}=1, f_{x y}=2 y-4, f_{y y}=2 x
$$

At the points where $x=0$, the determinant of the hessian is

$$
D=f_{x x} \cdot f_{y y}-f_{x y}^{2}=1 \cdot 0-(2 y-4)^{2}<0
$$

hence both $(0,0)$ and $(0,4)$ are saddle points. For $(4,2)$, the determinant of the Hessian is

$$
f_{x x} \cdot f_{y y}-f_{x y}^{2}=1 \cdot 8-0^{2}>0
$$

hence $(4,2)$ is a local minimum.

Problem 3.

Consider the function

$$
f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}
$$

(i) Show that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

along any line of fixed slope m through the origin equals 0 .
(ii) Evaluate the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ along the parabola $y=x^{2}$.
(iii) What is the value of the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?

Solution:

(i) We have $y=m x$ and

$$
f(x, y)=\frac{2 x^{2}(m x)}{x^{4}+(m x)^{2}}=\frac{2 m x}{x^{2}+m^{2}} \rightarrow \frac{0}{m^{2}}
$$

provided $x \rightarrow 0$. Thus $f(x, y) \rightarrow 0$ along the line $y=m x$ provided $m \neq 0$. When $m=0$, we have $y=0$ and $f(x, y)=0$.
(ii) When $y=x^{2}$, we have $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}=1$, so the limit equals 1 .
(iii) Since the answers in (i) and (ii) are different, the limit does not exist.

Problem 4.

Consider the function

$$
f(x, y)=\sqrt{6-x^{2}-y^{2}}
$$

(i) Find the direction of steepest increase of f at the point $P(1,2)$.
(ii) Draw the graph of the function f.
(iii) Find the directional derivative $D_{\vec{v}} f(1,2)$ in the direction $\vec{v}=\frac{3}{5} \vec{i}-\frac{4}{5} \vec{j}$.
(iv) Find the linear approximation $f((1,2)+.01 \cdot \vec{v})$.
(v) Find the tangent plane to the surface

$$
z^{2} x+z f\left(x^{2}, y\right)=2
$$

at $(1,2,1)$.

Solution:

(i) We have

$$
f_{x}=\frac{1}{2} \cdot \frac{-2 x}{\sqrt{6-x^{2}-y^{2}}}=-\frac{x}{\sqrt{6-x^{2}-y^{2}}} \Longrightarrow f_{x}(1,2)=-1
$$

Similarly,

$$
f_{y}=-\frac{y}{\sqrt{6-x^{2}-y^{2}}} \Longrightarrow f_{y}(1,2)=-2
$$

Thus $\nabla f=(-1,-2)$ and the direction of steepest increase is $(-1,-2)$.
(ii) The graph is

$$
z=f(x, y)=\sqrt{6-x^{2}-y^{2}} \Longrightarrow x^{2}+y^{2}+z^{2}=6, z \geq 0
$$

which is the half sphere of radius $\sqrt{6}$.
(iii) We have

$$
D_{\vec{v}} f=\nabla f \cdot v=(-1,-2) \cdot(3 / 5,-4 / 5)=1
$$

(iv) We evaluate

$$
f((1,2)+.01 \vec{v}) \approx f(1,2)+.01 \cdot D_{\vec{v}} f=1+.01 \cdot 1=1.01
$$

(v) We have

$$
g(x, y, z)=z^{2} x+z f\left(x^{2}, y\right)
$$

hence

$$
\begin{gathered}
g_{x}=z^{2}+2 z x f_{x}\left(x^{2}, y\right) \Longrightarrow g_{x}(1,2,1)=1+2(-1)=-1 \\
g_{y}=z f_{y}\left(x^{2}, y\right) \Longrightarrow g_{y}(1,2,1)=1(-2)=-2 \\
g_{z}=2 z x+f\left(x^{2}, y\right) \Longrightarrow g_{z}(1,2,1)=3
\end{gathered}
$$

The normal vector is $(-1,-2,3)$ hence the plane is

$$
-x-2 y+3 z=-2
$$

Problem 5.

Find the minimum and the maxim value of the function

$$
f(x, y, z)=2 x-2 y+z
$$

along the sphere of center $(1,0,-1)$ and radius 3 .

Solution: We have

$$
g(x, y, z)=(x-1)^{2}+y^{2}+(z+1)^{2}=9
$$

We need

$$
\nabla f=\lambda \nabla g
$$

which gives

$$
(2,-2,1)=2 \lambda(x-1, y, z+1) \Longrightarrow x-1=\frac{2}{2 \lambda}, y=\frac{-2}{2 \lambda}, z+1=\frac{1}{2 \lambda}
$$

Using

$$
(x-1)^{2}+y^{2}+(z+1)^{2}=9 \Longrightarrow\left(\frac{2}{2 \lambda}\right)^{2}+\left(-\frac{2}{2 \lambda}\right)^{2}+\left(\frac{1}{2 \lambda}\right)^{2}=9 \Longrightarrow 2 \lambda= \pm 1
$$

When $2 \lambda=1$ we find the point

$$
(3,-2,0) \text { with } f(3,-2,0)=10
$$

When $2 \lambda=-1$ we find the point

$$
(-1,2,-2) \text { with } f(-1,2,-2)=-8
$$

Problem 6.

Find the area of the region bounded in the first quadrant by the hyperbola $x y=1$ and the parabolas $x=y^{2}$ and $x=8 y^{2}$. Express the answer in the simplest possible form.

Solution: The intersection of the parabola $x=y^{2}$ and the hyperbola $x y=1$ occurs at $(1,1)$. The intersection of the parabola $x=8 y^{2}$ and the hyperbola $x y=1$ is the point $\left(2, \frac{1}{2}\right)$. The integral is to be split into two regions. For the region $0 \leq x \leq 1$, we have

$$
y_{\min }=\sqrt{\frac{x}{8}}, y_{\max }=\sqrt{x}
$$

For the region $1 \leq x \leq 2$, we have

$$
y_{\min }=\sqrt{\frac{x}{8}}, y_{\max }=\frac{1}{x}
$$

We calculate

$$
\begin{gathered}
\text { Area }=\int_{0}^{1} \int_{\sqrt{x / 8}}^{\sqrt{x}} d y d x+\int_{1}^{2} \int_{\sqrt{x / 8}}^{1 / x} d y d x \\
=\int_{0}^{1} \sqrt{x}-\sqrt{\frac{x}{8}} d x+\int_{1}^{2} \frac{1}{x}-\sqrt{\frac{x}{8}} d x \\
=\left.\frac{2}{3} x^{3 / 2}\left(1-\frac{1}{\sqrt{8}}\right)\right|_{x=0} ^{x=1}+\left.\ln x\right|_{x=1} ^{x=2}-\left.\frac{2}{3} \frac{x^{3 / 2}}{\sqrt{8}}\right|_{x=1} ^{x=2}=\ln 2 .
\end{gathered}
$$

Problem 7.

Find the average value of the function

$$
f(x, y, z)=x y z
$$

over the first octant

$$
x \geq 0, y \geq 0, z \geq 0
$$

of the ball $x^{2}+y^{2}+z^{2} \leq 1$.

Solution: We use spherical coordinates. We have

$$
\bar{f}=\frac{1}{\text { volume }} \iiint x y z d V .
$$

Thus

$$
\begin{gathered}
\bar{f}=\frac{1}{4 \pi / 3 \cdot 1 / 8} \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}}(\rho \sin \phi \cos \theta)(\rho \sin \phi \sin \theta)(\rho \cos \phi)\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta \\
=\frac{6}{\pi} \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \rho^{5} \sin ^{3} \phi \cos \phi \cos \theta \sin \theta d \rho d \phi d \theta \\
=\frac{6}{\pi} \int_{0}^{1} \rho^{5} d \rho \cdot \int_{0}^{\frac{\pi}{2}} \sin ^{3} \phi \cos \phi d \phi \cdot \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d \theta \\
=\left.\left.\left.\frac{6}{\pi} \cdot \frac{\rho^{6}}{6}\right|_{\rho=0} ^{\rho=1} \cdot \frac{1}{4} \sin ^{4} \phi\right|_{\phi=0} ^{\phi=\frac{\pi}{2}} \cdot \frac{1}{2} \sin ^{2} \theta\right|_{\theta=0} ^{\theta=\frac{\pi}{2}}=\frac{6}{\pi} \cdot \frac{1}{6} \cdot \frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8 \pi} .
\end{gathered}
$$

Problem 8.

Using cylindrical coordinates, find the mass of the solid with density $\rho=z$ bounded by the sphere $x^{2}+y^{2}+z^{2}=2$ and the cone $z^{2}=x^{2}+y^{2}$.

Solution: We calculate

$$
\iiint \rho d V
$$

The intersection is

$$
x^{2}+y^{2}=z^{2}=1
$$

and therefore the cylindrical coordinates satisfy

$$
0 \leq r \leq 1, r \leq z \leq \sqrt{2-r^{2}}
$$

We have

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} z d z(r d r) d \theta=\left.2 \pi \int_{0}^{1} \frac{1}{2} z^{2}\right|_{z=r} ^{z=\sqrt{2-r^{2}}} r d r= \\
& =2 \pi \int_{0}^{1}\left(1-r^{2}\right) r d r=\left.2 \pi\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{r=0} ^{1}=2 \pi \cdot \frac{1}{4}=\frac{\pi}{2}
\end{aligned}
$$

Problem 9.

Find the volume of the solid bounded by the cylinders

$$
z=1-y^{2}, z=y^{2}-1
$$

and the planes $x=0$ and $x+z=1$.

Solution: We calculate

$$
\begin{gathered}
\int_{-1}^{1} \int_{y^{2}-1}^{1-y^{2}} \int_{0}^{1-z} d x d z d y=\int_{-1}^{1} \int_{y^{2}-1}^{1-y^{2}}(1-z) d z d y=\left.\int_{-1}^{1}\left(z-\frac{1}{2} z^{2}\right)\right|_{z=y^{2}-1} ^{z=1-y^{2}} d y \\
=\int_{-1}^{1} 2\left(1-y^{2}\right) d y=2 y-\left.\frac{2}{3} y^{3}\right|_{y=-1} ^{y=1}=4-\frac{4}{3}=\frac{8}{3}
\end{gathered}
$$

Problem 10.

Consider the parametric curve given by

$$
\vec{r}(t)=\left(\frac{t^{4}}{4}, \frac{t^{6}}{6}\right), \quad 0 \leq t \leq 1
$$

Find the arclength parametrization of the curve.

Solution: We have

$$
\vec{r}^{\prime}(t)=\left(t^{3}, t^{5}\right) \Longrightarrow\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{\left(t^{3}\right)^{2}+\left(t^{5}\right)^{2}}=t^{3} \sqrt{1+t^{4}}
$$

The arclength function is

$$
s(t)=\int_{0}^{t}\left\|\vec{r}^{\prime}(u)\right\| d u=\int_{0}^{t} u^{3} \sqrt{1+u^{4}} d u=\left.\frac{1}{6}\left(1+u^{4}\right)^{\frac{3}{2}}\right|_{\substack{u=t \\ u=0}} ^{\substack{ \\6}} \frac{\left(1+t^{4}\right)^{\frac{3}{2}}-1}{6} .
$$

Solving $s(t)=s$ we find

$$
\frac{\left(1+t^{4}\right)^{\frac{3}{2}}-1}{6}=s \Longrightarrow t^{4}=(6 s+1)^{\frac{2}{3}}-1
$$

Thus

$$
\vec{r}(t)=\left(\frac{1}{4}\left((6 s+1)^{\frac{2}{3}}-1\right), \frac{1}{6}\left((6 s+1)^{\frac{2}{3}}-1\right)^{\frac{3}{2}}\right) .
$$

Finally, $t=0$ corresponds to $s=0$ and $t=1$ corresponds to $s=\frac{1}{6}\left(2^{\frac{3}{2}}-1\right)$.

Problem 11.

Assume that

$$
w=\ln \left(x^{2}-y^{2}+z^{2}\right)
$$

where

$$
x=2 s+t, y=2 s-t, \quad z=2 \sqrt{s t} .
$$

Using the chain rule, calculate the derivative

$$
\frac{\partial w}{\partial s}
$$

Express your answer in the simplest possible form.

Solution: We have

$$
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial s}
$$

We compute

$$
\frac{\partial w}{\partial x}=\frac{2 x}{x^{2}-y^{2}+z^{2}}=\frac{2(2 s+t)}{(2 s+t)^{2}-(2 s-t)^{2}+4 s t}=\frac{2(2 s+t)}{12 s t}=\frac{2 s+t}{6 s t}
$$

Similarly

$$
\begin{gathered}
\frac{\partial w}{\partial y}=-\frac{(2 s-t)}{6 s t} \\
\frac{\partial w}{\partial z}=\frac{4 \sqrt{s t}}{12 s t}=\frac{1}{3 \sqrt{s t}}
\end{gathered}
$$

Next,

$$
\frac{\partial x}{\partial s}=1, \frac{\partial y}{\partial s}=1, \frac{\partial z}{\partial s}=2 \cdot \frac{1}{2 \sqrt{s}} \cdot \sqrt{t}=\sqrt{\frac{t}{s}}
$$

Therefore

$$
\frac{\partial w}{\partial s}=\frac{(2 s+t)}{6 s t} \cdot 2+\frac{-(2 s-t)}{6 s t} \cdot 2+\frac{1}{3 \sqrt{s t}} \cdot \sqrt{\frac{t}{s}}=\frac{4 t}{6 s t}+\frac{1}{3 s}=\frac{1}{s}
$$

Problem 12.

The ellipsoid $x^{2}+2 y^{2}+z^{2}=4$ and the plane $2 x+y+3 z=6$ intersect in an ellipse passing through the point $(1,1,1)$. Find the parametrization of the tangent line to the ellipse at $(1,1,1)$.

Solution: The normal vector to the ellipsoid is $\vec{n}_{1}=(2 x, 4 y, 2 z)$ which gives at $(1,1,1)$ the vector

$$
\vec{n}_{1}=(2,4,2)
$$

The normal vector to the plane is

$$
\vec{n}_{2}=(2,1,3)
$$

The vector tangent to the ellipse is perpendicular to both \vec{n}_{1} and \vec{n}_{2} hence

$$
\vec{t}=\vec{n}_{1} \times \vec{n}_{2}=(2,4,2) \times(2,1,3)=(10,-2,-6)
$$

The tangent line is

$$
(1,1,1)+t(10,-2,-6)
$$

