Math 20C - Fall 2011 - Midterm I

Name: \qquad

Student ID: \qquad

Section time: \qquad

Instructions:

Please print your name, student ID and section time.
During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most half a page, front and back.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 6 questions which are worth 50 points. You have 50 minutes to complete the test.

Question	Score	Maximum
1		8
2		8
3		6
4		5
5		8
6		50
Total		

Problem 1. [8 points; 5, 3]

Consider the points $P(1,1,-2), Q(2,0,1)$ and $R(1,-1,0)$.
(i) Find the area of the triangle $P Q R$.
(ii) Find the equation of the plane through P, Q and R.

Problem 2. [8 points; 4, 4.]
(i) Find the constant a such that the function

$$
f(x, y, z)= \begin{cases}\frac{x^{4} y}{x^{2}+y^{2}+z^{2}} & \text { if }(x, y, z) \neq(0,0,0) \\ a & \text { if }(x, y, z)=(0,0,0)\end{cases}
$$

is continuous.
(ii) Determine the following limit or explain why it does not exist

$$
\lim _{(x, y) \rightarrow(0,1)} \frac{x^{2}(y-1)^{2}}{x^{4}+(y-1)^{4}} .
$$

Problem 3. [6 points.]
Let \vec{x}, \vec{y} and \vec{z} be vectors whose magnitudes are 1,2 , and 1 respectively. Suppose that \vec{x} is parallel to (and in the same direction as) \vec{y}, and \vec{x} is perpendicular to \vec{z}. Find the angle between the vectors $\vec{x}+\vec{z}$ and $\vec{y}+3 \vec{z}$.

Problem 4. [5 points.]
A line ℓ is perpendicular to the plane $x+2 y-3 z=2$ and passes through the point $(1,0,-1)$. Where does the line ℓ intersect the plane $x-2 y+z=-4$?

Problem 5. [15 points; 4, 3, 4, 4.]
The trajectory of a particle is given by the parametric curve

$$
x=2 \cos t+\sin t, \quad y=\cos t-2 \sin t, \quad z=2 t, \quad 0 \leq t \leq \pi .
$$

(i) Find the velocity and speed of the particle.
(ii) Find the equation of the tangent line to the trajectory at the point $t=\frac{\pi}{2}$.
(iii) Find the arclength parametrization of the trajectory.
(iv) Show that the particle never leaves the surface of a fixed cylinder whose central axis is the z-axis. Carefully draw the trajectory of the particle.

Problem 6. [8 points; 4, 4.]
Consider the function $f(x, y)=1-\frac{1}{9}(x-1)^{2}-\frac{1}{4} y^{2}$.
(i) Carefully sketch the level diagram for f showing three different levels.
(ii) Carefully sketch the graph of f.

