Problem 1.

Consider the points $P(1,1,-2), Q(2,0,1)$ and $R(1,-1,0)$.
(i) Find the area of the triangle $P Q R$.

We calculate

$$
\overrightarrow{P Q}=(1,-1,3), \overrightarrow{R Q}=(1,1,1) .
$$

The area of the parallelogram spanned by $\overrightarrow{P Q}$ and $\vec{Q} R$ is the magnitude of the cross product

$$
(2,-1,3) \times(1,1,1)=(-4,2,2) .
$$

This vector has magnitude $2 \sqrt{6}$, so the triangle $P Q R$ has area $\sqrt{6}$.
(ii) Find the equation of the plane through P, Q and R.

The plane through P, Q and R has as normal vector the cross product. The entries of the cross product are used as coefficients for the plane. We obtain the equation

$$
-4 x+2 y+2 z=-6 \Longleftrightarrow-2 x+y+z=-3
$$

using the point P (or Q or R) to find the right hand side.

Problem 2.

(i) Does there exist a constant such that the function

$$
f(x, y, z)= \begin{cases}\frac{x^{4} y}{x^{2}+y^{2}+z^{2}} & \text { if }(x, y, z) \neq(0,0,0) \\ a & \text { if }(x, y, z)=(0,0,0)\end{cases}
$$

is continuous?
We must have

$$
a=\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{4} y}{x^{2}+y^{2}+z^{2}} .
$$

Note that

$$
0 \leq\left|\frac{x^{4} y}{x^{2}+y^{2}+z^{2}}\right|=\frac{x^{2}}{x^{2}+y^{2}+z^{2}} \cdot\left|x^{2} y\right| \leq\left|x^{2} y\right| \rightarrow 0
$$

hence $a=0$.
(ii) Does the limit

$$
\lim _{(x, y) \rightarrow(0,1)} \frac{x^{2}(y-1)^{2}}{x^{4}+(y-1)^{4}}
$$

exist?
We find the limit along the line $y-1=m x$, keeping m fixed. Then, we obtain

$$
\lim _{\substack{y-1=m x \\ x \rightarrow 0}} \frac{x^{2}(y-1)^{2}}{x^{4}+(y-1)^{4}}=\lim _{x \rightarrow 0} \frac{x^{2} \cdot(m x)^{2}}{x^{4}+(m x)^{4}}=\frac{m^{2}}{m^{4}+1} .
$$

Since this depends on m, the original limit does not exist.

Problem 3.

Let \vec{x}, \vec{y}, and \vec{z} be vectors whose magnitudes are 1,2 , and 1 respectively. Suppose that \vec{x} is parallel to (and in the same direction as) \vec{y}, and \vec{x} is perpendicular to \vec{z}. Find the angle between the vectors $\vec{x}+\vec{z}$ and $\vec{y}+3 \vec{z}$.

We have

$$
\vec{x} \cdot \vec{x}=1, \vec{y} \cdot \vec{y}=4, \vec{z} \cdot \vec{z}=1 .
$$

Furthermore

$$
\vec{x} \cdot \vec{y}=1 \cdot 2 \cos 0=2, \vec{x} \cdot \vec{z}=0, \vec{y} \cdot \vec{z}=0 .
$$

The last two products are justified since the vectors involved are perpendicular.
We compute

$$
(\vec{x}+\vec{z}) \cdot(\vec{y}+3 \vec{z})=\vec{x} \cdot \vec{y}+\vec{z} \cdot \vec{y}+3 \vec{x} \cdot \vec{z}+3 \vec{z} \cdot \vec{z}=2+0+0+3=5 .
$$

We have

$$
\begin{gathered}
\|\vec{x}+\vec{z}\|^{2}=(\vec{x}+\vec{z}) \cdot(\vec{x}+\vec{z})=\vec{x} \cdot \vec{x}+2 \vec{x} \cdot \vec{z}+\vec{z} \cdot \vec{z}=1+0+1=2 \Longrightarrow\|\vec{x}+\vec{z}\|=\sqrt{2} \\
\|\vec{y}+3 \vec{z}\|^{2}=(\vec{y}+3 \vec{z}) \cdot(\vec{y}+3 \vec{z})=\vec{y} \cdot \vec{y}+6 \vec{y} \cdot \vec{z}+9 \vec{z} \cdot \vec{z}=4+0+9=13 \Longrightarrow\|\vec{y}+3 \vec{z}\|=\sqrt{13} .
\end{gathered}
$$

Thus

$$
\cos \theta=\frac{6}{\sqrt{2} \cdot \sqrt{13}}=\frac{5}{\sqrt{26}} \Longrightarrow \theta=\cos ^{-1} \frac{5}{\sqrt{26}}
$$

Problem 4.

A line ℓ is perpendicular to the plane $x+2 y-3 z=2$ and passes through the point $(1,0,-1)$. Where does the line intersect the plane $x-2 y+z=-4$?

The line is parametrized by

$$
(x, y, z)=(1,0,-1)+t(1,2,-3) .
$$

Then

$$
x=1+t, y=2 t z=-1-3 t
$$

and since

$$
x-2 y+z=1
$$

we must have

$$
(1+t)-4 t+(-1-3 t)=-4 \Longrightarrow-6 t=-4 \Longrightarrow t=2 / 3
$$

This gives $(x, y, z)=(1,0,-1)+\frac{2}{3}(1,2,-3)=\left(\frac{5}{3}, \frac{4}{3},-3\right)$.

Problem 5.

Consider the function $f(x, y)=1-\frac{1}{9}(x-1)^{2}-\frac{1}{4} y^{2}$.
(i) Sketch the level diagram for f showing at least three level curves.

The level curves are

$$
f(x, y)=c \Longleftrightarrow 1-\frac{1}{9}(x-1)^{2}-\frac{1}{4} y^{2}=c \Longleftrightarrow \frac{1}{9}(x-1)^{2}+\frac{1}{4} y^{2}=1-c .
$$

The level curves are ellipses centered at $(1,0)$. We can pick the levels $c=0, c=-3$ and $c=-8$, for instance. We obtain the three ellipses

$$
\frac{1}{9}(x-1)^{2}+\frac{1}{4} y^{2}=1, \quad \frac{1}{9}(x-1)^{2}+\frac{1}{4} y^{2}=4 \text { and } \frac{1}{9}(x-1)^{2}+\frac{1}{4} y^{2}=9 .
$$

(ii) Sketch the graph of f.

The graph of f will be a paraboloid whose z-cross sections are ellipses. The highest point on the paraboloid is $(1,0,1)$. The paraboloid is "concave down".

Problem 6.

The trajectory of a particle is given by the parametric curve

$$
x=\cos t+2 \sin t, \quad y=2 \cos t-\sin t, \quad z=2 t, \quad 0 \leq t \leq \pi .
$$

(i) Find the speed and velocity of the particle.

The velocity equals

$$
\vec{r}^{\prime}(t)=(-\sin t+2 \cos t,-2 \sin t-\cos t, 2),
$$

while the speed is

$$
\begin{gathered}
\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{(-\sin t+2 \cos t)^{2}+(-2 \sin t-\cos t)^{2}+4} \\
=\sqrt{\left(\sin ^{2} t+4 \cos ^{2} t-4 \cos t \sin t\right)+\left(4 \sin ^{2} t+\cos ^{2} t+4 \sin t \cos t\right)+4} \\
=\sqrt{5\left(\sin ^{2} t+\cos ^{2} t\right)+4}=\sqrt{9}=3
\end{gathered}
$$

(ii) Calculate the tangent line to the trajectory at $t=\frac{\pi}{2}$.

We calculate

$$
\vec{r}^{\prime}\left(\frac{\pi}{2}\right)=(-1,-2,2) .
$$

Also $r(\pi / 2)=(2,-1, \pi)$. Thus the tangent line passes through $(2,-1, \pi)$ and is parallel to $(-1,-2,2)$. The parametric equation is

$$
(x, y, z)=(2,-1, \pi)+s(-1,-2,2) .
$$

(iii) Calculate the arclength parametrization of the trajectory.

We solve for the arclength function

$$
s(t)=\int_{0}^{t} 3 d u=3 t
$$

and $s(t)=s \Longrightarrow t=s / 3$. This gives the parametrization

$$
\vec{R}(s)=\vec{r}(s / 3)=\left(\cos \frac{s}{3}+2 \sin \frac{s}{3}, 2 \cos \frac{s}{3}-\sin \frac{s}{3}, \frac{2 s}{3}\right) .
$$

(iv) Show that the trajectory stays on a cylinder whose central axis is the z-axis. Draw the trajectory of the particle.

We calculate

$$
x^{2}+y^{2}=(\cos t+2 \sin t)^{2}+(2 \cos t-\sin t)^{2}=5\left(\sin ^{2} t+\cos ^{2} t\right)=5 .
$$

This is the equation of a cylinder of radius $\sqrt{5}$ with central axis the z-axis. The trajectory is a helix wrapping around the cylinder.

