```
Math 20C - Fall 2011 - Midterm II
```

Name: \qquad

Student ID: \qquad

Section time: \qquad

Instructions:

Please print your name, student ID and section time.
During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most half a page, front and back.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 5 questions which are worth 45 points. You have 50 minutes to complete the test.

Question	Score	Maximum
1		7
2		9
3		8
4		9
5		12
Total		45

Problem 1. [7 points.]

Find the volume of the region bounded above by the elliptic parabolid $z=4-x^{2}-3 y^{2}$, on the bottom by the (x, y)-plane, on the sides by the planes $x=0, x=1, y=-1$ and $y=1$.

Problem 2. [9 points.]
Find the critical points of the function

$$
f(x, y)=x^{3}+6 x y+3 y^{2}-9 x
$$

and determine their nature.

Problem 3. [8 points.]

Let $z=f(x, y)$ where f is a function such that

$$
\frac{\partial f}{\partial y}=x-2 y
$$

It is furthermore known that

$$
\frac{\partial f}{\partial x}(4,3)=2 .
$$

Assume that

$$
x=\frac{u^{2}}{v}, y=2 u v-v^{2} .
$$

Calculate the derivative

$$
\frac{\partial z}{\partial v}
$$

at the point $u=2$ and $v=1$.

Problem 4. [9 points.]
Find the minimum and the maximum value of the function

$$
f(x, y)=x^{2}+2 y^{2}-6 x+2
$$

along the ellipse

$$
2 x^{2}+y^{2}=8 .
$$

Problem 5. [12 points; 3, 2, 3, 4.]
Consider the function

$$
f(x, y)=x^{2} y^{4}+x y^{2} \ln (2 x-y) .
$$

(i) Find the direction of steepest increase for the function f at the point $(1,1)$.
(ii) Find the directional derivative $D_{\vec{v}} f(1,1)$ in the direction $\vec{v}=\frac{1}{\sqrt{2}} \vec{i}-\frac{1}{\sqrt{2}} \vec{j}$.
(iii) Find the tangent plane to the graph of f at the point $(1,1,1)$.
(iv) Find the tangent plane to the level surface $z^{2} x^{3}-f(x, y)=0$ at the point $(1,1,1)$.

