Problem 1.

Find the critical points of the function

$$
f(x, y)=x^{3}+6 x y+3 y^{2}-9 x
$$

and determine their nature.

We calculate

$$
f_{x}=3 x^{2}+6 y-9, f_{y}=6 x+6 y
$$

Setting

$$
f_{y}=0 \Longrightarrow y=-x
$$

Using $f_{x}=0$ we find

$$
3 x^{2}-6 x-9=0 \Longrightarrow x^{2}-2 x-3=0 \Longrightarrow x=-1 \text { or } x=3
$$

We find the critical points $(-1,1)$ and $(3,-3)$. To find the nature of the critical points we use the second derivative test. We have

$$
f_{x x}=6 x, f_{y y}=6, f_{x y}=6
$$

At the point $(-1,1)$, we have $H_{f}=\left[\begin{array}{cc}-6 & 6 \\ 6 & 6\end{array}\right]$ which has negative determinant hence

$$
\begin{array}{|l|}
\hline(-1,1) \text { is a saddle point } .
\end{array}
$$

At the point $(3,-3)$, we have $H_{f}=\left[\begin{array}{cc}18 & 6 \\ 6 & 6\end{array}\right]$ which has negative determinant hence

$$
(3,-3) \text { is a local minimum } .
$$

Problem 2.

Find the minimum and the maximum of the function

$$
f(x, y)=x^{2}+2 y^{2}-6 x+2
$$

along the ellipse

$$
2 x^{2}+y^{2}=8 \text {. }
$$

Write $g(x, y)=2 x^{2}+y^{2}$. We have $\nabla g=(4 x, 2 y) \neq(0,0)$ when $g=8$. Hence

$$
\nabla f=\lambda \nabla g \Longrightarrow(2 x-6,4 y)=\lambda(4 x, 2 y)
$$

The second equation gives

$$
4 y=2 \lambda y
$$

hence either $y=0$ or $\lambda=2$. When $\lambda=2$, we obtain

$$
2 x-6=4 \lambda x=8 x \Longrightarrow x=-1 \Longrightarrow y^{2}=6 \Longrightarrow f(-1, \pm \sqrt{6})=21 .
$$

When $y=0$ we obtain

$$
2 x^{2}=8 \Longrightarrow x= \pm 2 \Longrightarrow f(2,0)=-6, f(-2,0)=18 .
$$

Thus $(-1, \pm \sqrt{6})$ gives the maximum value 21 and $(2,0)$ gives the minimum value $\boxed{-6}$.

Problem 3.

Assume that $z=f(x, y)$ and

$$
x=\frac{u^{2}}{v}, y=2 u v-v^{2} .
$$

We are given

$$
f_{x}(4,3)=2, \frac{\partial f}{\partial y}=x-2 y .
$$

Calculate

$$
\frac{\partial z}{\partial v}
$$

at the point $u=2$ and $v=1$.
Note that when $u=2, v=1$ we must have $x=4$ and $y=3$. Hence

$$
\frac{\partial z}{\partial x}=2 \text { and } \frac{\partial z}{\partial y}=x-2 y \Longrightarrow \frac{\partial z}{\partial y}=-2 \text { at } x=4, y=3 .
$$

Now

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} .
$$

We have

$$
\frac{\partial x}{\partial v}=-\frac{u^{2}}{v^{2}} \Longrightarrow \frac{\partial x}{\partial v}=-4 \text { at } u=2, v=1
$$

Finally,

$$
\frac{\partial y}{\partial v}=2 u-2 v \Longrightarrow \frac{\partial y}{\partial v}=2 \text { at } u=2, v=1 .
$$

Therefore

$$
\frac{\partial z}{\partial v}=2 \cdot(-4)+(-2) \cdot 2=--12 .
$$

Problem 4.

Find the volume of the region bounded on the top by the paraboloid $z=4-x^{2}-3 y^{2}$, on the bottom by the (x, y)-plane, on the sides by the planes $x=0, x=1, y=-1$ and $y=1$.

We find

$$
\int_{0}^{1} \int_{-1}^{1} 4-x^{2}-3 y^{2} d y d x
$$

The inner integral equals

$$
\int_{-1}^{1} 4-x^{2}-3 y^{2} d y=4 y-x^{2} y-\left.y^{3}\right|_{-1} ^{1}=8-2 x^{2}-2=6-2 x^{2}
$$

The outer integral equals

$$
\int_{0}^{1} 6-2 x^{2} d x=6 x-\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=6-\frac{2}{3}=\frac{16}{3}
$$

Problem 5.

Consider the function

$$
f(x, y)=x^{2} y^{4}+x y^{2} \ln (2 x-y) .
$$

(i) Find the unit direction of steepest increase for the function f at the point P.

We have

$$
f_{x}=2 x y^{4}+y^{2} \ln (2 x-y)+x y^{2} \cdot \frac{2}{2 x-y} \Longrightarrow f_{x}(1,1)=4 .
$$

Next,

$$
f_{y}=4 x^{2} y^{3}+2 x y \ln (2 x-y)+x y^{2} \cdot \frac{-1}{2 x-y} \Longrightarrow f_{y}(1,1)=3 .
$$

Thus $\nabla f(1,1)=(4,3)$. The direction of steepest increase is $(4,3)$.
(ii) Calculate the directional derivative $D_{\vec{v}} f(P)$ in the direction $\vec{v}=\frac{1}{\sqrt{2}} \vec{i}-\frac{1}{\sqrt{2}} \vec{j}$,

We have

$$
D_{\vec{v}} f(P)=\nabla f \cdot \vec{v}=(4,3) \cdot(1 / \sqrt{2},-1 / \sqrt{2})=\frac{1}{\sqrt{2}} .
$$

(iii) Calculate the tangent plane to the graph of f at the point $(P, f(P))$.

We have $f(P)=1$ hence

$$
z-1=4(x-1)+3(y-1) \Longrightarrow z=4 x+3 y-6 .
$$

(iv) Find the tangent plane to the surface $z^{2} x^{3}-f(x, y)=0$ at the point $(1,1,1)$.

We set $g(x, y, z)=z^{2} x^{3}-f(x, y)$. We find

$$
\begin{aligned}
g_{x}=3 x^{2} z^{2}-f_{x} & \Longrightarrow g_{x}(1,1,1)=3-4=-1 \\
g_{y}=-f_{y} & \Longrightarrow g_{y}(1,1,1)=-3 \\
g_{z}=2 z x^{3} & \Longrightarrow g_{z}(1,1,1)=2
\end{aligned}
$$

The tangent plane is

$$
-(x-1)-3(y-1)+2(z-1)=0 \Longrightarrow-x-3 y+2 z=-2 .
$$

