
Problem 1.

At what point (x, y, z) on the plane x+ 2y − z = 6 does the minimum of the function

f(x, y, z) = (x− 1)2 + 2y2 + (z + 1)2

occur?

Answer: Using Lagrange multipliers, we need to solve

∇f = λ∇g

where

g(x, y, z) = x+ 2y − z.
Computing the gradients, we conclude

(2x− 2, 4y, 2(z + 1)) = λ(1, 2,−1) =⇒ x =
λ

2
+ 1, y =

λ

2
, z = −λ

2
− 1.

Substituting, we have

x+ 2y − z = 4 =⇒ λ

2
+ 1 + 2 · λ

2
+
λ

2
+ 1 = 6 =⇒ λ = 2.

This gives

x = 2, y = 1, z = −2.

Problem 2.

Consider the function

f(x, y) = 3y2 − 2y3 − 3x2 + 6xy.

(i) Find the critical points of the function.
(ii) Determine the nature of the critical points (local min/local max/saddle).

(iii) Does the function f(x, y) have a global minimum or a global maximum?

Answer:

(i) We have

fx = −6x+ 6y = 0 =⇒ x = y

fy = 6y − 6y2 + 6x = 0 =⇒ y − y2 + x = 0.

Substituting x = y into the second equation, we obtain

2y − y2 = 0 =⇒ y = 0 or y = 2.

The critical points are

(0, 0), (2, 2).

(ii) We compute

A = fxx = −6, B = fxy = 6, fyy = 6− 12y.

When

x = y = 0 =⇒ AC −B2 = (−6)(6)− 62 < 0 =⇒ (0, 0) saddle point,

x = y = 2 =⇒ AC −B2 = (−6)(−18)− 62 > 0, A < 0 =⇒ (2, 2) local max.



(iii) We compute

lim
x→∞,y=0

f(x, y) = lim
x→∞

−3x2 = −∞ =⇒ no global min.

Similarly,

lim
x=0,y→−∞

f(x, y) = lim
y→−∞

3y2 − 2y3 =∞ =⇒ no global max.

Problem 3.

Consider the function

f(x, y) = ln(xy2)− 2x

y

(i) Find the tangent plane to the graph of f at the point (1, 1,−2).
(ii) Estimate the value of f(1.01, .99).

(iii) Find the tangent plane to the surface S:

z2xy3 − zf(x2, y3) = 3

at the point (1, 1, 1).

Answer:

(i) We compute

f(1, 1) = ln 1− 2 = −2

fx(x, y) =
y2

xy2
− 2

y
=

1

x
− 2

y
=⇒ fx(1, 1) = −1

fy(x, y) =
2xy

xy2
+

2x

y2
=

2

y
+

2x

y2
=⇒ fy(1, 1) = 4

The tangent plane is

z + 2 = −(x− 1) + 4(y − 1) =⇒ z = −x+ 4y − 5.

(ii) We have

z + 2 ≈ −(1.01− 1) + 4(.99− 1) = −.05 =⇒ z = f(1.01, .99) ≈ −2.05.

(iii) Write

g(x, y, z) = z2xy3 − zf(x2, y3).

We calculate

gx = z2y3 − 2zxfx(x2, y3) =⇒ gx(1, 1, 1) = 1− 2fx(1, 1) = 3

gy = 3z2xy2 − 3zy2fy(x
2, y3) =⇒ gy(1, 1, 1) = 3− 3fy(1, 1) = −9

and

gz = 2zxy3 − f(x2, y3) =⇒ gz(1, 1, 1) = 2− f(1, 1) = 4.

The tangent plane has normal vector (3,−8, 4) and equation

3(x− 1)− 9(y − 1) + 4(z − 1) = 0 =⇒ 3x− 9y + 4z = −2.



Problem 4.

Find the global minimum and global maximum of the function

f(x, y) = x2 + y2 − 2x− 2y + 4

over the closed disk
x2 + y2 ≤ 8.

Answer:

We find the critical points in the interior by setting the partial derivatives to zero:

fx = 2x− 2 = 0 =⇒ x = 1

fy = 2y − 2 = 0 =⇒ y = 1.

We get the critical point (1, 1) with value

f(1, 1) = 2.

We check the boundary g(x, y) = x2 + y2 = 8 using Lagrange mulipliers

∇f = λ∇g =⇒ (2x− 2, 2y − 2) = λ(2x, 2y) =⇒ x− 1 = λx, y − 1 = λy.

Dividing we obtain

x− 1

y − 1
=
λx

λy
=
x

y
=⇒ y(x− 1) = x(y − 1) =⇒ xy − y = xy − x =⇒ x = y.

Since
x2 + y2 = 8 =⇒ x = y = ±2.

We evaluate
f(2, 2) = 4, f(−2,−2) = 20.

Therefore (1, 1) is the global minimum, while (−2,−2) is the global maximum.

Problem 5.

Consider the function

f(x, y) = 1 +
√
x2 + y2.

(i) Draw the contour diagram of f labeling at least three levels of your choice.
(ii) Compute the gradient of f at (1,−1) and draw it on the contour diagram of part (i).

(iii) Does the function f have a global minimum? If no, why not? If yes, what is the minimum
value?

(iv) Draw the graph of the function f .



Answer:

(i) The contour diagram consists of circles centered at the origin. Indeed,

f(x, y) = c =⇒ x2 + y2 = (c− 1)2.

Level c corresponds to a circle of radius c− 1.
You may use three values for c to draw the contour diagram. For instance, for c = 2, 3, 4,

we get circles of radii 1, 2, 3 respectively.
(ii) The gradient is

∇f =

(
x√

x2 + y2
,

y√
x2 + y2

)
=⇒ ∇f(1,−1) =

1√
2

(1,−1).

This vector is normal to the level curve.
(iii) The global minimum occurs at (0, 0). The minimum value is f(0, 0) = 1.
(iv) The graph is a cone with vertex (0, 0, 1).

Problem 6.

Consider the function
f(x, y) = e−3x+2y

√
2x+ 1 .

(i) Calculate the gradient of f at (0, 0).

(ii) Find the directional derivative of f at (0, 0) in the direction u = i+j√
2
.

(iii) What is the unit direction for which the rate of increase of f at (0, 0) is maximal?

Answer:

(i) Using the product rule and the chain rule, we have

fx = −3e−3x+2y
√

2x+ 1 + e−3x+2y · 1

2
√

2x+ 1
· 2 =⇒ fx(0, 0) = −3 + 1 = −2,

fy = 2e−3x+2y
√

2x+ 1 =⇒ fy(0, 0) = 2.

The gradient is
∇f = (−2, 2).

(ii) We compute

fu = ∇f · u = (−2, 2) ·
(

1√
2
,

1√
2

)
= 0.

(iii) The direction is parallel to the gradient, normalized to have unit length

v =
∇f
||∇f ||

=
(−2, 2)√

(−2)2 + 22
=

(
− 1√

2
,

1√
2

)
.

Problem 7.

Consider the planes
x+ 2y − z = 1, x+ 4y − 2z = 3.

(i) Find normal vectors to the two planes.
(ii) Are the two planes parallel? Are they perpendicular? What is the angle between the planes?

(iii) Find the parametrization of the line of intersection of the two planes.



(iv) Find a third plane parallel to the intersection line you found in (iii), which passes through
the points P (1, 0, 1) and Q(−1, 2, 1).

Answer:

(i) The normal vectors are given by the coefficients of the two planes

~n1 = (1, 2,−1), ~n2 = (1, 4,−2).

(ii) The vectors ~n1, ~n2 are not proportional hence the planes are not parallel. We have

~n1 · ~n2 = (1, 2,−1) · (1, 4,−2) = 1 + 8 + 2 6= 0.

The planes are not perpendicular. In fact, we can calculate the angle between the normal
vectors as

cos θ =
~n1 · ~n2

||~n1|| · ||~n2||
=

11√
6 ·
√

21
.

(iii) The line of intersection is normal to both n1 and n2 hence it is parallel to the cross product

~n1 × ~n2 = (0, 1, 2).

A point of intersection can be found by setting z = 1. We find x+ 2y = 2 and x+ 4y = 5
hence y = 3/2 and x = −1. The line of intersection is

(−1, 3/2, 1) + t(0, 1, 2).

(iv) We have
~PQ = (−2, 2, 0).

The plane is parallel to the vectors (−2, 2, 0) and (0, 1, 2). A normal vector is

~n = (−2, 2, 0)× (0, 1, 2) = (4, 4,−2).

The plane is
4x+ 4y − 2z = 2

using that it passes through either P or Q.

Problem 8.

Consider the function
w = u2v e−v

and assume that
u = x2 − 2xy, v = −x+ 2 ln y.

Calculate the values of the derivatives
∂w

∂x
and

∂w

∂y
at the point (x, y) = (1, 1).

Answer: We evaluate
∂w

∂x
=
∂w

∂u
· ∂u
∂x

+
∂w

∂v
· ∂v
∂x
.

At x = y = 1, we have
u = −1, v = −1.

We compute
∂w

∂u
= 2uve−v = 2e



∂w

∂v
= u2e−v − u2ve−v = e+ e = 2e.

Furthermore,
∂u

∂x
= 2x− 2y = 0

∂v

∂x
= −1.

Thus
∂w

∂x
= 2e · 0 + 2e · (−1) = −2e.

A similar calculation shows
∂w

∂y
= 0.

Problem 9.

Determine the average value of the function

f(x, y, z) =
√
x2 + y2 + z2 ex

2+y2+z2

over the region D bounded by the two spheres x2 +y2 +z2 = a2 and x2 +y2 +z2 = b2, for 0 < a < b.

Answer: Spherical coordinates are most convenient. The region is defined by a ≤ ρ ≤ b. We
have

Volume(D) =
4π

3
(b3 − a3).

Next,∫
D
f dV =

∫ 2π

0

∫ π

0

∫ b

a
ρeρ

2
ρ2 sinϕdρ dϕdθ =

(∫ 2π

0

∫ π

0
sinϕdϕdθ

)∫ b

a
ρ3eρ

2
dρ = 4π

∫ b

a
ρ3eρ

2
dρ

The integrand is equal to u dv, where u = ρ2, dv = ρeρ
2
dρ, and v = 1

2e
ρ2 . We apply integration by

parts:

= 4π

[
uv

]ρ=b
ρ=a

− 4π

∫ ρ=b

ρ=a
v du = 4π

[
1

2
ρ2eρ

2

]b
a

− 4π

∫ b

a
ρeρ

2
dρ

= 2π(b2eb
2 − a2ea2)− 2π

[
eρ

2

]b
a

= 2π(b2eb
2 − eb2 − a2ea2 + ea

2
) = 2π((b2 − 1)eb

2 − (a− 1)ea
2
).

To find the average, we divide the above integral by the volume, to find

average =
3((b2 − 1)eb

2 − (a− 1)ea
2
)

2(b3 − a3)
.

Problem 10.

Find the total mass of the region W that represents the intersection of the solid cylinder x2+y2 ≤
1 and the solid ellipsoid 2(x2 + y2) + z2 ≤ 10 given that the density δ = 1.

Answer: The cylinder and ellipsoid are symmetric around the z axis, so cylindrical coordinates
are convenient. The region is defined by

r ≤ 1, −
√

10− 2r2 ≤ z ≤
√

10− 2r2.



To find the mass, we integrate the density. We find

mass =

∫ 2π

0

∫ 1

0

∫ √10−2r2
−
√
10−2r2

r dz dr dθ =

∫ 2π

0

∫ 1

0
2r
√

10− 2r2 dr dθ =

∫ 2π

0

[
−1

3
(10− 2r2)3/2

]r=1

r=0

dθ

=

∫ 2π

0

1

3
103/2 − 1

3
83/2 dθ =

∫ 2π

0

1

3
(10
√

10− 8
√

8) dθ =
2π

3
(10
√

10− 16
√

2) =
4
√

2π

3
(5
√

5− 8) .

Problem 11.

Find the centroid of the region bounded above by the sphere of radius 5 and below by the cone

z = 2
√
x2 + y2

Answer:

The region is symmetric about the z-axis, so that x̂ and ŷ lie on that axis (i.e. both are zero).
Thus we need only find

ẑ =
1

V ol(W )

∫∫∫
z dV.

In spherical coordinates

=

∫ 2π

0

∫ tan−1 1
2

0

∫ 5

0
ρ3 cosφ sinφ dρdφdθ = 2π

∫ tan−1 1
2

0

[
ρ4

4
cosφ sinφ

]5
0

dφ

=
625π

2

∫ tan−1 1
2

0
cosφ sinφdφ =

625π

4

[
sin2 φ

]tan−1 1
2

0

=
125π

4

We calculate the volume

Vol(W ) =

∫ 2π

0

∫ tan−1/2

0

∫ 5

0
ρ2 sinφdρ dφ dθ = 2π · 125

3
· (1− 2√

5
).

Dividing, we obtain the value for ẑ.

Problem 12.

Find the volume of the region in the first octant that lies inside the sphere x2 + y2 + z2 = 4 and
the cylinder x2 + y2 − 2x = 0.

Answer: Note that x2 + y2 − 2x = 0 can be rewritten as (x − 1)2 + y2 = 1. In cylindrical
coordinates, the integral is∫ π

2

0

∫ 2 cos θ

0

∫ √4−r2
0

dzr dr dθ =

∫ π
2

0

∫ 2 cos θ

0
r
√

4− r2 dr dθ =

∫ π
2

0

−1

3

[
(4− r2)3/2

]2 cos θ
0

dθ

=
8

3

∫ π
2

0
1− sin3 θdθ =

8

3

(
π

2
− 2

3

)
.



Problem 13.

Evaluate ∫ 2

0

∫ 1

y
2

e−x
2
dxdy.

Answer: First, we change the order of integration:∫ 2

0

∫ 1

y
2

e−x
2
dxdy =

∫ 1

0

∫ 2x

0
e−x

2
dydx =

∫ 1

0
2xe−x

2
dx

Then, we substitute u = −x2 ⇒ du = −2xdx. The integral becomes

−
∫ −1
0

eudu =

∫ 0

−1
eudu =

[
eu
]0
−1

=
e− 1

e
.

Problem 14.

Calculate the limits below or explain why they do not exist

(i) limx,y,z→0
x2y2z2

x4+y4+z4
.

(ii) limx,y→0
xy2

x2+4y4
.

Answer:

(i) When y ≤ z, we have

y2z2 ≤ z4 ≤ x4 + y4 + z4,

hence
y2z2

x4 + y4 + z4
≤ 1 =⇒ 0 ≤ x2y2z2

x4 + y4 + z4
≤ x2 → 0.

The limit is 0 by the squeeze theorem. When y > z, the argument is similar.
(ii) If we let x, y → 0 along the parabola x = my2, the fraction becomes

xy2

x2 + 4y4
=

my4

m2y4 + 4y4
=

m

m2 + 4
.

This does depend on m, hence the limit does not exist.

Problem 15.

Evaluate
∫∫
D x

2 + y2dA where D is the region in the first quadrant bounded by

y = 3x, y = x, xy = 3.

Answer: ∫∫
D
x2 + y2 dA =

∫ 1

0

∫ 3x

x
x2 + y2 dydx+

∫ √3
1

∫ 3
x

x
x2 + y2 dydx

=

∫ 1

0

[
y3

3
+ yx2

]3x
x

dx+

∫ √3
1

[
y3

3
+ yx2

] 3
x

x

dx



=

∫ 1

0

(
32x3

3

)
dx+

∫ √3
1

(
27 + 9x4 − 4x3

3x3

)
dx

=
8

3

[
x4
]1
0

+

[
−27 + 9x4 − 2x6

6x2

]√3
1

= 6 .

Problem 16.

Find the arclength parametrization of the cycloid

x = t− sin t, y = 1− cos t, 0 ≤ t ≤ 2π.

What is the length of the cycloid?

Answer: We evaluate
dx = (1− cos t) dt, dy = sin t dt

hence

ds =
√

(dx)2 + (dy)2 =
√

(1− cos t)2 + (sin t)2 dt =
√

2− 2 cos t dt = 2 sin
t

2
dt

using the half angle formula. The length between 0 and t equals

s(t) =

∫ t

0
2 sin

u

2
du = −4 cos

u

2
|u=tu=0 = 4− 4 cos

t

2
.

We solve

s(t) = s =⇒ 4− 4 cos
t

2
= s =⇒ cos

t

2
= −s

4
+ 1 =⇒ t = 2 cos−1

(
1− s

4

)
.

The parametric equation becomes

x = 2 cos−1
(

1− s

4

)
− sin

(
2 cos−1

(
1− s

4

))
y = 1− cos

(
2 cos−1

(
1− s

4

))
.

Clearly, t = 0 corresponds to s = 0 and t = 2π corresponds to s = 8. Thus

0 ≤ s ≤ 8

and the length of the cycloid is therefore 8.

The formulas can be simplified a bit using double angle formulas (This is not necessary for the
complete answer, but it’s good to remark it nonetheless). For instance using that

cos 2α = 2 cos2 α− 1

for
α = cos−1

(
1− s

4

)
=⇒ cosα = 1− s

4
we have

y = 1− cos
(

2 cos−1
(

1− s

4

))
= 1− cos(2α) = 1−

[
2 cos2 α− 1

]
= 1− [2(1− s/4)2 − 1] = s− s2

8
.



Problem 17.

Calculate the volume of the region bounded by the parabolic cylinder x = y2, the planes z = 0
and x+ z = 1.

Answer: The region is z-simple. The shadow of the region in the (xy) plane is the region R
bounded by x = y2 and x = 1. For each value of x and y, we have zmin = 0 and zmax = 1− x. We
have

volume =

∫
R

∫ zmax

zmin

dzdA =

∫ 1

−1

∫ 1

y2

∫ 1−x

0
dzdxdy =

= 2

∫ 1

0

∫ 1

y2
(1− x) dx dy = 2

∫ 1

0
(x− 1

2
x2)|x=1

x=y2 dy =

∫ 1

0

(
1

2
− y2 +

1

2
y4
)
dy =

8

15
.

Problem 18.

Find the integral ∫ ∫ ∫
D
|y − 1| dV

where D is the oblique segment of a paraboloid bounded by z = x2 + y2 and the plane z = 2y + 3.

Answer: The region is x-simple, so we evaluate∫ ∫ ∫
|y − 1| dx dz dy.

The shadow in the yz plane is the region R bounded by the line

z = 2y + 3

and the parabola
z = y2.

These intersect in (−1, 1) and (3, 9). Clearly

xmin = −
√
z − y2, xmax =

√
z − y2.

We have ∫ ∫
R

∫ √z−y2
−
√
z−y2
|y − 1| dx dA =

∫ 3

−1

∫ 2y+3

y2

∫ √z−y2
−
√
z−y2
|y − 1| dx dz dy.

We proceed to evaluate the integral. After evaluating the inner integral, we are left with

2

∫ 3

−1

∫ 2y+3

y2
|y − 1|

√
z − y2 dz dy = 2

∫ 3

−1
|y − 1| · 2

3

(
z − y2

) 3
2 |z=2y+3
z=y2

dy

=
4

3

∫ 3

−1
|y − 1|(3 + 2y − y2)

3
2 dy.

We can evaluate this integral by substitution. Write

u = y − 1

obtaining

4

3

∫ 2

−2
|u|(4− u2)

3
2 du =

8

3

∫ 2

0
u(4− u2)

3
2 du = −8

3
(4− u2)5/2 · 1

5
|u=2
u=0 =

256

15
.


