## Problem 1.

At what point $(x, y, z)$ on the plane $x+2 y-z=6$ does the minimum of the function

$$
f(x, y, z)=(x-1)^{2}+2 y^{2}+(z+1)^{2}
$$

occur?
Answer: Using Lagrange multipliers, we need to solve

$$
\nabla f=\lambda \nabla g
$$

where

$$
g(x, y, z)=x+2 y-z
$$

Computing the gradients, we conclude

$$
(2 x-2,4 y, 2(z+1))=\lambda(1,2,-1) \Longrightarrow x=\frac{\lambda}{2}+1, y=\frac{\lambda}{2}, z=-\frac{\lambda}{2}-1 .
$$

Substituting, we have

$$
x+2 y-z=4 \Longrightarrow \frac{\lambda}{2}+1+2 \cdot \frac{\lambda}{2}+\frac{\lambda}{2}+1=6 \Longrightarrow \lambda=2 .
$$

This gives

$$
x=2, y=1, z=-2 .
$$

## Problem 2.

Consider the function

$$
f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y .
$$

(i) Find the critical points of the function.
(ii) Determine the nature of the critical points (local min/local max/saddle).
(iii) Does the function $f(x, y)$ have a global minimum or a global maximum?

Answer:
(i) We have

$$
\begin{gathered}
f_{x}=-6 x+6 y=0 \Longrightarrow x=y \\
f_{y}=6 y-6 y^{2}+6 x=0 \Longrightarrow y-y^{2}+x=0 .
\end{gathered}
$$

Substituting $x=y$ into the second equation, we obtain

$$
2 y-y^{2}=0 \Longrightarrow y=0 \text { or } y=2 .
$$

The critical points are

$$
(0,0),(2,2)
$$

(ii) We compute

$$
A=f_{x x}=-6, \quad B=f_{x y}=6, f_{y y}=6-12 y
$$

When

$$
\begin{gathered}
x=y=0 \Longrightarrow A C-B^{2}=(-6)(6)-6^{2}<0 \Longrightarrow(0,0) \text { saddle point } \\
x=y=2 \Longrightarrow A C-B^{2}=(-6)(-18)-6^{2}>0, A<0 \Longrightarrow(2,2) \text { local max. }
\end{gathered}
$$

(iii) We compute

$$
\lim _{x \rightarrow \infty, y=0} f(x, y)=\lim _{x \rightarrow \infty}-3 x^{2}=-\infty \Longrightarrow \text { no global min. }
$$

Similarly,

$$
\lim _{x=0, y \rightarrow-\infty} f(x, y)=\lim _{y \rightarrow-\infty} 3 y^{2}-2 y^{3}=\infty \Longrightarrow \text { no global max. }
$$

## Problem 3.

Consider the function

$$
f(x, y)=\ln \left(x y^{2}\right)-\frac{2 x}{y}
$$

(i) Find the tangent plane to the graph of $f$ at the point $(1,1,-2)$.
(ii) Estimate the value of $f(1.01, .99)$.
(iii) Find the tangent plane to the surface $S$ :

$$
z^{2} x y^{3}-z f\left(x^{2}, y^{3}\right)=3
$$

at the point $(1,1,1)$.

## Answer:

(i) We compute

$$
\begin{gathered}
f(1,1)=\ln 1-2=-2 \\
f_{x}(x, y)=\frac{y^{2}}{x y^{2}}-\frac{2}{y}=\frac{1}{x}-\frac{2}{y} \Longrightarrow f_{x}(1,1)=-1 \\
f_{y}(x, y)=\frac{2 x y}{x y^{2}}+\frac{2 x}{y^{2}}=\frac{2}{y}+\frac{2 x}{y^{2}} \Longrightarrow f_{y}(1,1)=4
\end{gathered}
$$

The tangent plane is

$$
z+2=-(x-1)+4(y-1) \Longrightarrow z=-x+4 y-5
$$

(ii) We have

$$
z+2 \approx-(1.01-1)+4(.99-1)=-.05 \Longrightarrow z=f(1.01, .99) \approx-2.05
$$

(iii) Write

$$
g(x, y, z)=z^{2} x y^{3}-z f\left(x^{2}, y^{3}\right) .
$$

We calculate

$$
\begin{aligned}
g_{x}=z^{2} y^{3}-2 z x f_{x}\left(x^{2}, y^{3}\right) & \Longrightarrow g_{x}(1,1,1)=1-2 f_{x}(1,1)=3 \\
g_{y}=3 z^{2} x y^{2}-3 z y^{2} f_{y}\left(x^{2}, y^{3}\right) & \Longrightarrow g_{y}(1,1,1)=3-3 f_{y}(1,1)=-9
\end{aligned}
$$

and

$$
g_{z}=2 z x y^{3}-f\left(x^{2}, y^{3}\right) \Longrightarrow g_{z}(1,1,1)=2-f(1,1)=4 .
$$

The tangent plane has normal vector $(3,-8,4)$ and equation

$$
3(x-1)-9(y-1)+4(z-1)=0 \Longrightarrow 3 x-9 y+4 z=-2 .
$$

## Problem 4.

Find the global minimum and global maximum of the function

$$
f(x, y)=x^{2}+y^{2}-2 x-2 y+4
$$

over the closed disk

$$
x^{2}+y^{2} \leq 8
$$

Answer:
We find the critical points in the interior by setting the partial derivatives to zero:

$$
\begin{aligned}
& f_{x}=2 x-2=0 \Longrightarrow x=1 \\
& f_{y}=2 y-2=0 \Longrightarrow y=1 .
\end{aligned}
$$

We get the critical point $(1,1)$ with value

$$
f(1,1)=2 .
$$

We check the boundary $g(x, y)=x^{2}+y^{2}=8$ using Lagrange mulipliers

$$
\nabla f=\lambda \nabla g \Longrightarrow(2 x-2,2 y-2)=\lambda(2 x, 2 y) \Longrightarrow x-1=\lambda x, y-1=\lambda y
$$

Dividing we obtain

$$
\frac{x-1}{y-1}=\frac{\lambda x}{\lambda y}=\frac{x}{y} \Longrightarrow y(x-1)=x(y-1) \Longrightarrow x y-y=x y-x \Longrightarrow x=y
$$

Since

$$
x^{2}+y^{2}=8 \Longrightarrow x=y= \pm 2 .
$$

We evaluate

$$
f(2,2)=4, f(-2,-2)=20 .
$$

Therefore $(1,1)$ is the global minimum, while $(-2,-2)$ is the global maximum.

## Problem 5.

Consider the function

$$
f(x, y)=1+\sqrt{x^{2}+y^{2}} .
$$

(i) Draw the contour diagram of $f$ labeling at least three levels of your choice.
(ii) Compute the gradient of $f$ at $(1,-1)$ and draw it on the contour diagram of part (i).
(iii) Does the function $f$ have a global minimum? If no, why not? If yes, what is the minimum value?
(iv) Draw the graph of the function $f$.

## Answer:

(i) The contour diagram consists of circles centered at the origin. Indeed,

$$
f(x, y)=c \Longrightarrow x^{2}+y^{2}=(c-1)^{2}
$$

Level $c$ corresponds to a circle of radius $c-1$.
You may use three values for $c$ to draw the contour diagram. For instance, for $c=2,3,4$, we get circles of radii $1,2,3$ respectively.
(ii) The gradient is

$$
\nabla f=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right) \Longrightarrow \nabla f(1,-1)=\frac{1}{\sqrt{2}}(1,-1) .
$$

This vector is normal to the level curve.
(iii) The global minimum occurs at $(0,0)$. The minimum value is $f(0,0)=1$.
(iv) The graph is a cone with vertex $(0,0,1)$.

## Problem 6.

Consider the function

$$
f(x, y)=e^{-3 x+2 y} \sqrt{2 x+1} .
$$

(i) Calculate the gradient of $f$ at $(0,0)$.
(ii) Find the directional derivative of $f$ at $(0,0)$ in the direction $\mathbf{u}=\frac{i+j}{\sqrt{2}}$.
(iii) What is the unit direction for which the rate of increase of $f$ at $(0,0)$ is maximal?

Answer:
(i) Using the product rule and the chain rule, we have

$$
\begin{gathered}
f_{x}=-3 e^{-3 x+2 y} \sqrt{2 x+1}+e^{-3 x+2 y} \cdot \frac{1}{2 \sqrt{2 x+1}} \cdot 2 \Longrightarrow f_{x}(0,0)=-3+1=-2, \\
f_{y}=2 e^{-3 x+2 y} \sqrt{2 x+1} \Longrightarrow f_{y}(0,0)=2 .
\end{gathered}
$$

The gradient is

$$
\nabla f=(-2,2) .
$$

(ii) We compute

$$
f_{\mathbf{u}}=\nabla f \cdot \mathbf{u}=(-2,2) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=0
$$

(iii) The direction is parallel to the gradient, normalized to have unit length

$$
\mathbf{v}=\frac{\nabla f}{\|\nabla f\|}=\frac{(-2,2)}{\sqrt{(-2)^{2}+2^{2}}}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) .
$$

## Problem 7.

Consider the planes

$$
x+2 y-z=1, x+4 y-2 z=3 .
$$

(i) Find normal vectors to the two planes.
(ii) Are the two planes parallel? Are they perpendicular? What is the angle between the planes?
(iii) Find the parametrization of the line of intersection of the two planes.
(iv) Find a third plane parallel to the intersection line you found in (iii), which passes through the points $P(1,0,1)$ and $Q(-1,2,1)$.

Answer:
(i) The normal vectors are given by the coefficients of the two planes

$$
\vec{n}_{1}=(1,2,-1), \vec{n}_{2}=(1,4,-2) .
$$

(ii) The vectors $\vec{n}_{1}, \vec{n}_{2}$ are not proportional hence the planes are not parallel. We have

$$
\vec{n}_{1} \cdot \vec{n}_{2}=(1,2,-1) \cdot(1,4,-2)=1+8+2 \neq 0 .
$$

The planes are not perpendicular. In fact, we can calculate the angle between the normal vectors as

$$
\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left\|\vec{n}_{1}\right\| \cdot\left\|\vec{n}_{2}\right\|}=\frac{11}{\sqrt{6} \cdot \sqrt{21}} .
$$

(iii) The line of intersection is normal to both $n_{1}$ and $n_{2}$ hence it is parallel to the cross product

$$
\vec{n}_{1} \times \vec{n}_{2}=(0,1,2) .
$$

A point of intersection can be found by setting $z=1$. We find $x+2 y=2$ and $x+4 y=5$ hence $y=3 / 2$ and $x=-1$. The line of intersection is

$$
(-1,3 / 2,1)+t(0,1,2) .
$$

(iv) We have

$$
\overrightarrow{P Q}=(-2,2,0) .
$$

The plane is parallel to the vectors $(-2,2,0)$ and $(0,1,2)$. A normal vector is

$$
\vec{n}=(-2,2,0) \times(0,1,2)=(4,4,-2) .
$$

The plane is

$$
4 x+4 y-2 z=2
$$

using that it passes through either $P$ or $Q$.

## Problem 8.

## Consider the function

$$
w=u^{2} v e^{-v}
$$

and assume that

$$
u=x^{2}-2 x y, v=-x+2 \ln y .
$$

Calculate the values of the derivatives

$$
\frac{\partial w}{\partial x} \text { and } \frac{\partial w}{\partial y}
$$

at the point $(x, y)=(1,1)$.
Answer: We evaluate

$$
\frac{\partial w}{\partial x}=\frac{\partial w}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial w}{\partial v} \cdot \frac{\partial v}{\partial x} .
$$

At $x=y=1$, we have

$$
u=-1, v=-1 .
$$

We compute

$$
\frac{\partial w}{\partial u}=2 u v e^{-v}=2 e
$$

$$
\frac{\partial w}{\partial v}=u^{2} e^{-v}-u^{2} v e^{-v}=e+e=2 e .
$$

Furthermore,

$$
\begin{gathered}
\frac{\partial u}{\partial x}=2 x-2 y=0 \\
\frac{\partial v}{\partial x}=-1
\end{gathered}
$$

Thus

$$
\frac{\partial w}{\partial x}=2 e \cdot 0+2 e \cdot(-1)=-2 e
$$

A similar calculation shows

$$
\frac{\partial w}{\partial y}=0
$$

## Problem 9.

Determine the average value of the function

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} e^{x^{2}+y^{2}+z^{2}}
$$

over the region $D$ bounded by the two spheres $x^{2}+y^{2}+z^{2}=a^{2}$ and $x^{2}+y^{2}+z^{2}=b^{2}$, for $0<a<b$.
Answer: Spherical coordinates are most convenient. The region is defined by $a \leq \rho \leq b$. We have

$$
\operatorname{Volume}(D)=\frac{4 \pi}{3}\left(b^{3}-a^{3}\right)
$$

Next,
$\int_{D} f d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{a}^{b} \rho e^{\rho^{2}} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\left(\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \varphi d \varphi d \theta\right) \int_{a}^{b} \rho^{3} e^{\rho^{2}} d \rho=4 \pi \int_{a}^{b} \rho^{3} e^{\rho^{2}} d \rho$ The integrand is equal to $u d v$, where $u=\rho^{2}, d v=\rho e^{\rho^{2}} d \rho$, and $v=\frac{1}{2} e^{\rho^{2}}$. We apply integration by parts:

$$
\begin{gathered}
=4 \pi[u v]_{\rho=a}^{\rho=b}-4 \pi \int_{\rho=a}^{\rho=b} v d u=4 \pi\left[\frac{1}{2} \rho^{2} e^{\rho^{2}}\right]_{a}^{b}-4 \pi \int_{a}^{b} \rho e^{\rho^{2}} d \rho \\
=2 \pi\left(b^{2} e^{b^{2}}-a^{2} e^{a^{2}}\right)-2 \pi\left[e^{\rho^{2}}\right]_{a}^{b}=2 \pi\left(b^{2} e^{b^{2}}-e^{b^{2}}-a^{2} e^{a^{2}}+e^{a^{2}}\right)=2 \pi\left(\left(b^{2}-1\right) e^{b^{2}}-(a-1) e^{a^{2}}\right) .
\end{gathered}
$$

To find the average, we divide the above integral by the volume, to find

$$
\text { average }=\frac{3\left(\left(b^{2}-1\right) e^{b^{2}}-(a-1) e^{a^{2}}\right)}{2\left(b^{3}-a^{3}\right)} .
$$

## Problem 10.

Find the total mass of the region $W$ that represents the intersection of the solid cylinder $x^{2}+y^{2} \leq$ 1 and the solid ellipsoid $2\left(x^{2}+y^{2}\right)+z^{2} \leq 10$ given that the density $\delta=1$.

Answer: The cylinder and ellipsoid are symmetric around the $z$ axis, so cylindrical coordinates are convenient. The region is defined by

$$
r \leq 1,-\sqrt{10-2 r^{2}} \leq z \leq \sqrt{10-2 r^{2}}
$$

To find the mass, we integrate the density. We find

$$
\begin{aligned}
& \operatorname{mass}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{10-2 r^{2}}}^{\sqrt{10-2 r^{2}}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} 2 r \sqrt{10-2 r^{2}} d r d \theta=\int_{0}^{2 \pi}\left[-\frac{1}{3}\left(10-2 r^{2}\right)^{3 / 2}\right]_{r=0}^{r=1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{3} 10^{3 / 2}-\frac{1}{3} 8^{3 / 2} d \theta=\int_{0}^{2 \pi} \frac{1}{3}(10 \sqrt{10}-8 \sqrt{8}) d \theta=\frac{2 \pi}{3}(10 \sqrt{10}-16 \sqrt{2})=\frac{4 \sqrt{2} \pi}{3}(5 \sqrt{5}-8)
\end{aligned}
$$

## Problem 11.

Find the centroid of the region bounded above by the sphere of radius 5 and below by the cone $z=2 \sqrt{x^{2}+y^{2}}$

## Answer:

The region is symmetric about the $z$-axis, so that $\hat{x}$ and $\hat{y}$ lie on that axis (i.e. both are zero). Thus we need only find

$$
\hat{z}=\frac{1}{\operatorname{Vol}(W)} \iiint z d V .
$$

In spherical coordinates

$$
\begin{gathered}
=\int_{0}^{2 \pi} \int_{0}^{\tan ^{-1} \frac{1}{2}} \int_{0}^{5} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta=2 \pi \int_{0}^{\tan ^{-1} \frac{1}{2}}\left[\frac{\rho^{4}}{4} \cos \phi \sin \phi\right]_{0}^{5} d \phi \\
=\frac{625 \pi}{2} \int_{0}^{\tan ^{-1} \frac{1}{2}} \cos \phi \sin \phi d \phi=\frac{625 \pi}{4}\left[\sin ^{2} \phi\right]_{0}^{\tan ^{-1} \frac{1}{2}} \\
=\frac{125 \pi}{4}
\end{gathered}
$$

We calculate the volume

$$
\operatorname{Vol}(W)=\int_{0}^{2 \pi} \int_{0}^{\tan ^{-1 / 2}} \int_{0}^{5} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \cdot \frac{125}{3} \cdot\left(1-\frac{2}{\sqrt{5}}\right) .
$$

Dividing, we obtain the value for $\hat{z}$.

## Problem 12.

Find the volume of the region in the first octant that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$ and the cylinder $x^{2}+y^{2}-2 x=0$.

Answer: Note that $x^{2}+y^{2}-2 x=0$ can be rewritten as $(x-1)^{2}+y^{2}=1$. In cylindrical coordinates, the integral is

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} \int_{0}^{\sqrt{4-r^{2}}} d z r d r d \theta=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r \sqrt{4-r^{2}} d r d \theta=\int_{0}^{\frac{\pi}{2}} \frac{-1}{3}\left[\left(4-r^{2}\right)^{3 / 2}\right]_{0}^{2 \cos \theta} d \theta \\
=\frac{8}{3} \int_{0}^{\frac{\pi}{2}} 1-\sin ^{3} \theta d \theta=\frac{8}{3}\left(\frac{\pi}{2}-\frac{2}{3}\right) \cdot
\end{gathered}
$$

## Problem 13.

Evaluate

$$
\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{-x^{2}} d x d y
$$

Answer: First, we change the order of integration:

$$
\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{-x^{2}} d x d y=\int_{0}^{1} \int_{0}^{2 x} e^{-x^{2}} d y d x=\int_{0}^{1} 2 x e^{-x^{2}} d x
$$

Then, we substitute $u=-x^{2} \Rightarrow d u=-2 x d x$. The integral becomes

$$
-\int_{0}^{-1} e^{u} d u=\int_{-1}^{0} e^{u} d u=\left[e^{u}\right]_{-1}^{0}=\frac{e-1}{e} .
$$

## Problem 14.

Calculate the limits below or explain why they do not exist
(i) $\lim _{x, y, z \rightarrow 0} \frac{x^{2} y^{2} z^{2}}{x^{4}+y^{4}+z^{4}}$.
(ii) $\lim _{x, y \rightarrow 0} \frac{x y^{2}}{x^{2}+4 y^{4}}$.

## Answer:

(i) When $y \leq z$, we have

$$
y^{2} z^{2} \leq z^{4} \leq x^{4}+y^{4}+z^{4},
$$

hence

$$
\frac{y^{2} z^{2}}{x^{4}+y^{4}+z^{4}} \leq 1 \Longrightarrow 0 \leq \frac{x^{2} y^{2} z^{2}}{x^{4}+y^{4}+z^{4}} \leq x^{2} \rightarrow 0
$$

The limit is 0 by the squeeze theorem. When $y>z$, the argument is similar.
(ii) If we let $x, y \rightarrow 0$ along the parabola $x=m y^{2}$, the fraction becomes

$$
\frac{x y^{2}}{x^{2}+4 y^{4}}=\frac{m y^{4}}{m^{2} y^{4}+4 y^{4}}=\frac{m}{m^{2}+4} .
$$

This does depend on $m$, hence the limit does not exist.

## Problem 15.

Evaluate $\iint_{D} x^{2}+y^{2} d A$ where $D$ is the region in the first quadrant bounded by

$$
y=3 x, y=x, x y=3
$$

Answer:

$$
\begin{gathered}
\iint_{D} x^{2}+y^{2} d A=\int_{0}^{1} \int_{x}^{3 x} x^{2}+y^{2} d y d x+\int_{1}^{\sqrt{3}} \int_{x}^{\frac{3}{x}} x^{2}+y^{2} d y d x \\
=\int_{0}^{1}\left[\frac{y^{3}}{3}+y x^{2}\right]_{x}^{3 x} d x+\int_{1}^{\sqrt{3}}\left[\frac{y^{3}}{3}+y x^{2}\right]_{x}^{\frac{3}{x}} d x
\end{gathered}
$$

$$
\begin{aligned}
= & \int_{0}^{1}\left(\frac{32 x^{3}}{3}\right) d x+\int_{1}^{\sqrt{3}}\left(\frac{27+9 x^{4}-4 x^{3}}{3 x^{3}}\right) d x \\
& =\frac{8}{3}\left[x^{4}\right]_{0}^{1}+\left[\frac{-27+9 x^{4}-2 x^{6}}{6 x^{2}}\right]_{1}^{\sqrt{3}}=6
\end{aligned}
$$

## Problem 16.

Find the arclength parametrization of the cycloid

$$
x=t-\sin t, y=1-\cos t, 0 \leq t \leq 2 \pi
$$

What is the length of the cycloid?
Answer: We evaluate

$$
d x=(1-\cos t) d t, d y=\sin t d t
$$

hence

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{(1-\cos t)^{2}+(\sin t)^{2}} d t=\sqrt{2-2 \cos t} d t=2 \sin \frac{t}{2} d t
$$

using the half angle formula. The length between 0 and $t$ equals

$$
s(t)=\int_{0}^{t} 2 \sin \frac{u}{2} d u=-\left.4 \cos \frac{u}{2}\right|_{u=0} ^{u=t}=4-4 \cos \frac{t}{2}
$$

We solve

$$
s(t)=s \Longrightarrow 4-4 \cos \frac{t}{2}=s \Longrightarrow \cos \frac{t}{2}=-\frac{s}{4}+1 \Longrightarrow t=2 \cos ^{-1}\left(1-\frac{s}{4}\right)
$$

The parametric equation becomes

$$
\begin{gathered}
x=2 \cos ^{-1}\left(1-\frac{s}{4}\right)-\sin \left(2 \cos ^{-1}\left(1-\frac{s}{4}\right)\right) \\
y=1-\cos \left(2 \cos ^{-1}\left(1-\frac{s}{4}\right)\right) .
\end{gathered}
$$

Clearly, $t=0$ corresponds to $s=0$ and $t=2 \pi$ corresponds to $s=8$. Thus

$$
0 \leq s \leq 8
$$

and the length of the cycloid is therefore 8 .
The formulas can be simplified a bit using double angle formulas (This is not necessary for the complete answer, but it's good to remark it nonetheless). For instance using that

$$
\cos 2 \alpha=2 \cos ^{2} \alpha-1
$$

for

$$
\alpha=\cos ^{-1}\left(1-\frac{s}{4}\right) \Longrightarrow \cos \alpha=1-\frac{s}{4}
$$

we have
$y=1-\cos \left(2 \cos ^{-1}\left(1-\frac{s}{4}\right)\right)=1-\cos (2 \alpha)=1-\left[2 \cos ^{2} \alpha-1\right]=1-\left[2(1-s / 4)^{2}-1\right]=s-\frac{s^{2}}{8}$.

## Problem 17.

Calculate the volume of the region bounded by the parabolic cylinder $x=y^{2}$, the planes $z=0$ and $x+z=1$.

Answer: The region is $z$-simple. The shadow of the region in the $(x y)$ plane is the region $R$ bounded by $x=y^{2}$ and $x=1$. For each value of $x$ and $y$, we have $z_{\min }=0$ and $z_{\max }=1-x$. We have

$$
\begin{gathered}
\text { volume }=\int_{R} \int_{z_{\min }}^{z_{\max }} d z d A=\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} d z d x d y= \\
=2 \int_{0}^{1} \int_{y^{2}}^{1}(1-x) d x d y=\left.2 \int_{0}^{1}\left(x-\frac{1}{2} x^{2}\right)\right|_{x=y^{2}} ^{x=1} d y=\int_{0}^{1}\left(\frac{1}{2}-y^{2}+\frac{1}{2} y^{4}\right) d y=\frac{8}{15} .
\end{gathered}
$$

## Problem 18.

Find the integral

$$
\iiint_{D}|y-1| d V
$$

where $D$ is the oblique segment of a paraboloid bounded by $z=x^{2}+y^{2}$ and the plane $z=2 y+3$.
Answer: The region is $x$-simple, so we evaluate

$$
\iiint|y-1| d x d z d y
$$

The shadow in the $y z$ plane is the region $R$ bounded by the line

$$
z=2 y+3
$$

and the parabola

$$
z=y^{2} .
$$

These intersect in $(-1,1)$ and $(3,9)$. Clearly

$$
x_{\min }=-\sqrt{z-y^{2}}, x_{\max }=\sqrt{z-y^{2}} .
$$

We have

$$
\iint_{R} \int_{-\sqrt{z-y^{2}}}^{\sqrt{z-y^{2}}}|y-1| d x d A=\int_{-1}^{3} \int_{y^{2}}^{2 y+3} \int_{-\sqrt{z-y^{2}}}^{\sqrt{z-y^{2}}}|y-1| d x d z d y
$$

We proceed to evaluate the integral. After evaluating the inner integral, we are left with

$$
\begin{gathered}
2 \int_{-1}^{3} \int_{y^{2}}^{2 y+3}|y-1| \\
\sqrt{z-y^{2}} d z d y=\left.2 \int_{-1}^{3}|y-1| \cdot \frac{2}{3}\left(z-y^{2}\right)^{\frac{3}{2}}\right|_{z=y^{2}} ^{z=2 y+3} d y \\
=\frac{4}{3} \int_{-1}^{3}|y-1|\left(3+2 y-y^{2}\right)^{\frac{3}{2}} d y
\end{gathered}
$$

We can evaluate this integral by substitution. Write

$$
u=y-1
$$

obtaining

$$
\frac{4}{3} \int_{-2}^{2}|u|\left(4-u^{2}\right)^{\frac{3}{2}} d u=\frac{8}{3} \int_{0}^{2} u\left(4-u^{2}\right)^{\frac{3}{2}} d u=-\left.\frac{8}{3}\left(4-u^{2}\right)^{5 / 2} \cdot \frac{1}{5}\right|_{u=0} ^{u=2}=\frac{256}{15}
$$

