## MATH 20C - PRACTICE PROBLEMS FOR MIDTERM II

1. Find the critical points of the function

$$
f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2}
$$

and determine their type i.e. local min/local max/saddle point.
2. Determine the global max and min of the function

$$
f(x, y)=x^{2}-2 x+2 y^{2}-2 y+2 x y
$$

over the compact region

$$
-1 \leq x \leq 1,0 \leq y \leq 2
$$

3. Using Lagrange multipliers, optimize the function

$$
f(x, y)=x^{2}+(y+1)^{2}
$$

subject to the constraint

$$
2 x^{2}+(y-1)^{2} \leq 18
$$

4. Consider the function

$$
w=e^{x^{2} y}
$$

where

$$
x=u \sqrt{v}, y=\frac{1}{u v^{2}} .
$$

Using the chain rule, compute the derivatives

$$
\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v}
$$

5. Consider the function $f(x, y)=\frac{x^{2}}{y^{4}}$.
(i) Carefully draw the level curve passing through $(1,-1)$. On this graph, draw the gradient of the function at $(1,-1)$.
(ii) Compute the directional derivative of $f$ at $(1,-1)$ in the direction $\mathbf{u}=\left(\frac{4}{5}, \frac{3}{5}\right)$. Use this calculation to estimate

$$
f((1,-1)+.01 \mathbf{u})
$$

(iii) Find the unit direction $\mathbf{v}$ of steepest descent for the function $f$ at $(1,-1)$.
(iv) Find the two unit directions $\mathbf{w}$ for which the directional derivative $D_{\mathbf{w}} f=0$.
6. Consider the function

$$
f(x, y)=x^{4} y^{3} .
$$

(i) Write down the equation of the tangent plane at the graph of the function at the point $(1,1,1)$.
(ii) Write down an expression for the change, $\Delta z$, in $z=f(x, y)$ depending on $\Delta x$ and $\Delta y$, the change in $x$ and $y$, respectively, near the point $x=y=1$. Is the function $f(x, y)$ more sensitive to a change in $x$ or to a change in $y$ ?
(iii) Using your answer to (ii), find the approximate value of $f(1.01,1.01)$.
7. Show that the surfaces

$$
z=7 x^{2}-12 x-5 y^{2} \text { and } x y z^{2}=2
$$

intersect orthogonally at the point $(2,1,-1)$. That is, show that the tangent planes to the two surfaces are perpendicular.
8. Evaluate $\iint_{D} 3 y d A$, where $D$ is the region bounded by

$$
x y^{2}=1, y=x, x=0, y=3 .
$$

9. Evaluate

$$
\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin (x)}{x} d x d y
$$

10. Find the volume of the region bounded on top by the plane $z=x+3 y+1$, on the bottom by the $x y$-plane, and on the sides by the planes $x=0, x=3, y=1, y=2$.
11. (Harder, solve only after looking at problems 1-10) Two paraboloids

$$
z=(x-2)^{2}+(y-2)^{2}
$$

and

$$
z=20-x^{2}-y^{2}
$$

intersect along a curve $C$. Find the point of $C$ which is closest to the point $(1,1,0)$.

## SOLUTIONS

## Problem 1.

Find the critical points of the function

$$
f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2}
$$

and determine their type i.e. local min/local max/saddle point. Are there any global min/max?
Solution: Partial derivatives

$$
f_{x}=6 x^{2}-6 x y-24 x, f_{y}=-3 x^{2}-6 y .
$$

To find the critical points, we solve

$$
\begin{aligned}
f_{x}=0 \Longrightarrow x^{2}-x y-4 x=0 & \Longrightarrow x(x-y-4)=0 \Longrightarrow x=0 \text { or } x-y-4=0 \\
f_{y} & =0 \Longrightarrow x^{2}+2 y=0 .
\end{aligned}
$$

When $x=0$ we find $y=0$ from the second equation. In the second case, we solve the system below by substitution

$$
\begin{gathered}
x-y-4=0, x^{2}+2 y=0 \Longrightarrow x^{2}+2 x-8=0 \\
\Longrightarrow x=2 \text { or } x=-4 \Longrightarrow y=-2 \text { or } y=-8 .
\end{gathered}
$$

The three critical points are

$$
(0,0),(2,-2),(-4,-8)
$$

To find the nature of the critical points, we apply the second derivative test. We have

$$
A=f_{x x}=12 x-6 y-24, B=f_{x y}=-6 x, C=f_{y y}=-6 .
$$

At the point $(0,0)$ we have

$$
f_{x x}=-24, f_{x y}=0, f_{y y}=-6 \Longrightarrow A C-B^{2}=(-24)(-6)-0>0 \Longrightarrow(0,0) \text { is local max } .
$$

Similarly, we find

$$
(2,-2) \text { is a saddle point }
$$

since

$$
A C-B^{2}=(12)(-6)-(-12)^{2}=<0
$$

and

$$
(-4,-8) \text { is saddle }
$$

since

$$
A C-B^{2}=(-24)(-6)-(24)^{2}<0
$$

## Problem 2.

Determine the global max and min of the function

$$
f(x, y)=x^{2}-2 x+2 y^{2}-2 y+2 x y
$$

over the compact region

$$
-1 \leq x \leq 1,0 \leq y \leq 2
$$

Solution: We look for the critical points in the interior:
$\nabla f=(2 x-2+2 y, 4 y-2+2 x)=(0,0) \Longrightarrow 2 x-2+2 y=4 y-2+2 x=0 \Longrightarrow y=0, x=1$.
However, the point $(1,0)$ is not in the interior so we discard it for now.
We check the boundary. There are four lines to be considered:

- the line $x=-1$ :

$$
f(-1, y)=3+2 y^{2}-4 y
$$

The critical points of this function of $y$ are found by setting the derivative to zero:

$$
\frac{\partial}{\partial y}\left(3+2 y^{2}-4 y\right)=0 \Longrightarrow 4 y-4=0 \Longrightarrow y=1 \text { with } f(-1,1)=1 \text {. }
$$

- the line $x=1$ :

$$
f(1, y)=2 y^{2}-1
$$

Computing the derivative and setting it to 0 we find the critical point $y=0$. The corresponding point $(1,0)$ is one of the corners, and we will consider it separately below.

- the line $y=0$ :

$$
f(x, 0)=x^{2}-2 x
$$

Computing the derivative and setting it to 0 we find $2 x-2=0 \Longrightarrow x=1$. This gives the corner $(1,0)$ as before.

- the line $y=2$ :

$$
f(x, 2)=x^{2}+2 x+4
$$

with critical point $x=-1$ which is again a corner.
Finally, we check the four corners

$$
(-1,0),(1,0),(-1,2),(1,2)
$$

The values of the function $f$ are

$$
f(-1,0)=3, f(1,0)=-1, f(-1,2)=3, f(1,2)=7 \text {. }
$$

From the boxed values we select the lowest and the highest to find the global min and global max. We conclude that
global minimum occurs at $(1,0)$
global maximum occurs at $(1,2)$.

## Problem 3.

Using Lagrange multipliers, optimize the function

$$
f(x, y)=x^{2}+(y+1)^{2}
$$

subject to the constraint

$$
2 x^{2}+(y-1)^{2} \leq 18
$$

Solution: We check for the critical points in the interior

$$
f_{x}=2 x, f_{y}=2(y+1) \Longrightarrow(0,-1) \text { is a critical point } .
$$

The second derivative test

$$
f_{x x}=2, f_{y y}=2, f_{x y}=0
$$

shows this a local minimum with

$$
f(0,-1)=0 \text {. }
$$

We check the boundary

$$
g(x, y)=2 x^{2}+(y-1)^{2}=18
$$

via Lagrange multipliers. We compute

$$
\nabla f=(2 x, 2(y+1))=\lambda \nabla g=\lambda(4 x, 2(y-1)) .
$$

Therefore

$$
\begin{gathered}
2 x=4 x \lambda \Longrightarrow x=0 \text { or } \lambda=\frac{1}{2} \\
2(y+1)=2 \lambda(y-1) .
\end{gathered}
$$

In the first case $x=0$ we get

$$
g(0, y)=(y-1)^{2}=18 \Longrightarrow y=1+3 \sqrt{2}, 1-3 \sqrt{2}
$$

with values

$$
f(0,1+3 \sqrt{2})=(2+3 \sqrt{2})^{2}, \quad f(0,1-3 \sqrt{2})=(2-3 \sqrt{2})^{2} .
$$

In the second case $\lambda=\frac{1}{2}$ we obtain from the second equation

$$
2(y+1)=y-1 \Longrightarrow y=-3
$$

Now,

$$
g(x, y)=18 \Longrightarrow x= \pm 1 .
$$

At $( \pm 1,-3)$, the function takes the value

$$
f( \pm 1,-3)=( \pm 1)^{2}+(-3+1)^{2}=5
$$

By comparing all boxed values, it is clear the $(0,-1)$ is the minimum, while $(0,1+3 \sqrt{2})$ is the maximum.

## Problem 4.

Consider the function

$$
w=e^{x^{2} y}
$$

where

$$
x=u \sqrt{v}, y=\frac{1}{u v^{2}} .
$$

Using the chain rule, compute the derivatives

$$
\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v} .
$$

Solution: We have

$$
\begin{gathered}
\frac{\partial w}{\partial x}=2 x y \exp \left(x^{2} y\right)=2 u \sqrt{v} \frac{1}{u v^{2}} \exp \left(u^{2} v \cdot \frac{1}{u v^{2}}\right)=\frac{2}{v^{3 / 2}} \exp \left(\frac{u}{v}\right) \\
\frac{\partial w}{\partial y}=x^{2} \exp \left(x^{2} y\right)=u^{2} v \exp \left(\frac{u}{v}\right) \\
\frac{\partial x}{\partial u}=\sqrt{v}, \frac{\partial x}{\partial v}=\frac{u}{2 \sqrt{v}} \\
\frac{\partial y}{\partial u}=-\frac{1}{u^{2} v^{2}}, \frac{\partial y}{\partial v}=-\frac{2}{u v^{3}} .
\end{gathered}
$$

Thus

$$
\begin{aligned}
\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial u} & +\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial u}=\frac{2}{v^{3 / 2}} \exp \left(\frac{u}{v}\right) \cdot \sqrt{v}-u^{2} v \exp \left(\frac{u}{v}\right) \cdot \frac{1}{u^{2} v^{2}}= \\
& =\frac{2}{v} \exp \left(\frac{u}{v}\right)-\frac{1}{v} \exp \left(\frac{u}{v}\right)=\frac{1}{v} \exp \left(\frac{u}{v}\right)
\end{aligned}
$$

Similarly,

$$
\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial u}=-\frac{u}{v^{2}} \exp \left(\frac{u}{v}\right) .
$$

Problem 5.
Consider the function $f(x, y)=\frac{x^{2}}{y^{4}}$.
(i) Carefully draw the level curve passing through $(1,-1)$. On this graph, draw the gradient of the function at $(1,-1)$.
(ii) Compute the directional derivative of $f$ at $(1,-1)$ in the direction $\mathbf{u}=\left(\frac{4}{5}, \frac{3}{5}\right)$. Use this calculation to estimate

$$
f((1,-1)+.01 \mathbf{u}) .
$$

(iii) Find the unit direction $\mathbf{v}$ of steepest descent for the function $f$ at $(1,-1)$.
(iv) Find the two unit directions $\mathbf{w}$ for which the directional derivative $D_{\mathbf{w}} f=0$.

## Solution:

(i) The level is $f(1,1)=1$. The level curve is

$$
f(x, y)=f(1,1)=1 \Longrightarrow x^{2}=y^{4} \Longrightarrow x= \pm y^{2} .
$$

The level curve is a union of two parabolas through the origin. The gradient

$$
\nabla f=\left(\frac{2 x}{y^{4}}, \frac{-4 x^{2}}{y^{5}}\right) \Longrightarrow \nabla f(1,-1)=(2,4)
$$

is normal to the parabolas.
(ii) We compute

$$
f_{\mathbf{u}}=\nabla f \cdot \mathbf{u}=(2,4) \cdot\left(\frac{4}{5}, \frac{3}{5}\right)=4 .
$$

For the approximation, we have $f(1,-1)=1$ and

$$
f((1,-1)+.01 \mathbf{u}) \approx f(1,-1)+.01 f_{\mathbf{u}}=1+.01 \cdot 4=1.04
$$

(iii) The direction of steepest decrease is opposite to the gradient. We need to divide by the length to get a unit vector:

$$
\mathbf{v}=-\frac{\nabla f}{\|\nabla f\|}=-\frac{(2,4)}{\sqrt{2^{2}+4^{2}}}=\left(-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right) .
$$

(iv) Write

$$
\mathbf{w}=\left(w_{1}, w_{2}\right) .
$$

We have

$$
f_{\mathbf{w}}=\nabla f \cdot \mathbf{w}=(2,4) \cdot \mathbf{w}=2 w_{1}+4 w_{2}=0 \Longrightarrow w_{1}=-2 w_{2} .
$$

Since $\mathbf{w}$ has unit length

$$
w_{1}^{2}+w_{2}^{2}=1 \Longrightarrow\left(-2 w_{2}\right)^{2}+w_{2}^{2}=1 \Longrightarrow w_{2}= \pm \frac{1}{\sqrt{5}} .
$$

Therefore

$$
\mathbf{w}= \pm\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) .
$$

## Problem 6.

Consider the function

$$
f(x, y)=x^{4} y^{3} .
$$

(i) Write down the equation of the tangent plane at the graph of the function at the point $(1,1,1)$.
(ii) Write down an expression for the change, $\Delta z$, in $z=f(x, y)$ depending on $\Delta x$ and $\Delta y$, the change in $x$ and $y$, respectively, near the point $x=y=1$. Is the function $f(x, y)$ more sensitive to a change in $x$ or to a change in $y$ ?
(iii) Using your answer to (ii), find the approximate value of $f(1.01,1.02)$.

## Solution:

(i) We compute

$$
\begin{aligned}
& f_{x}=4 x^{3} y^{3} \Longrightarrow f_{x}(1,1)=4 \\
& f_{y}=3 x^{4} y^{2} \Longrightarrow f_{y}(1,1)=3
\end{aligned}
$$

The tangent plane is

$$
z-1=4(x-1)+3(y-1) \Longrightarrow 4 x+3 y-z=6
$$

(ii)

$$
\Delta z=4 \Delta x+3 \Delta y
$$

The function is more sensitive to a change in $x$ because the $x$ derivative at $(1,1)$ is higher.
(iii) We have

$$
\Delta x=1.01-1=.01, \Delta y=1.02-1=.02
$$

hence

$$
\Delta z=4(.01)+3(.02)=.1
$$

This gives

$$
z(1.01,1.02)=z(1,1)+\Delta z=1.1 \Longrightarrow f(1.01,1.02) \approx 1.1
$$

## Problem 7.

Show that the surfaces

$$
z=7 x^{2}-12 x-5 y^{2} \text { and } x y z^{2}=2
$$

intersect orthogonally at the point $(2,1,-1)$. That is, show that the tangent planes to the two surfaces are perpendicular.

Solution: The first surface is determined by $z=7 x^{2}-12 x-5 y^{2}$, which can be viewed as the level surface

$$
f(x, y, z)=7 x^{2}-12 x-5 y^{2}-z=0
$$

The normal vector is given by the gradient at $(2,1,-1)$ :

$$
\nabla f=(14 x-12,-10 y,-1)=(-16,10,1)
$$

The second surface is the level set determined by $g(x, y, z)=x y z^{2}=2$. A normal vector at $(2,1,-1)$ is

$$
\nabla g=\left(y z^{2}, x z^{2},+2 x y z\right)=(1,2,-4)
$$

The dot product of these two normal vectors is 0 :

$$
\nabla f \cdot \nabla g=(-16,10,1) \cdot(1,2,-4)=0
$$

Since the normals are perpendicular, the surfaces are orthogonal at $(2,1,-1)$.

## Problem 8.

Evaluate $\iint_{D} 3 y d A$, where $D$ is the region bounded by

$$
x y^{2}=1, y=x, x=0, y=3 .
$$

Solution:

$$
\begin{gathered}
\iint_{D} 3 y d A=\int_{0}^{\frac{1}{9}} \int_{x}^{3} 3 y d y d x+\int_{\frac{1}{9}}^{1} \int_{x}^{\frac{1}{\sqrt{x}}} 3 y d y d x=\int_{0}^{\frac{1}{9}}\left[\frac{3 y^{2}}{2}\right]_{x}^{3} d x+\int_{\frac{1}{9}}^{1}\left[\frac{3 y^{2}}{2}\right]_{x}^{\frac{1}{\sqrt{x}}} d x= \\
=\int_{0}^{\frac{1}{9}}\left(\frac{27-3 x^{2}}{2}\right) d x+\int_{\frac{1}{9}}^{1}\left(\frac{3-3 x^{3}}{2 x}\right) d x=\left[\frac{27 x-x^{3}}{2}\right]_{0}^{\frac{1}{9}}+\left[\frac{3 \ln |x|-x^{3}}{2}\right]_{\frac{1}{9}}^{1} \\
=1+3 \ln 3 .
\end{gathered}
$$

## Problem 9.

Evaluate

$$
\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin (x)}{x} d x d y
$$

Solution: Changing the order of integration, we obtain:

$$
\begin{aligned}
\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin (x)}{x} d x d y=\int_{0}^{\pi} \int_{0}^{x} \frac{\sin (x)}{x} d y d x & =\int_{0}^{\pi}\left[y \frac{\sin (x)}{x}\right]_{0}^{x} d x=\int_{0}^{\pi} \sin (x) d x=[-\cos (x)]_{0}^{\pi} \\
& =2
\end{aligned}
$$

## Problem 10.

Find the volume of the region bounded on top by the plane $z=x+3 y+1$, on the bottom by the $x y$-plane, and on the sides by the planes $x=0, x=3, y=1, y=2$.

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{aligned}
\int_{0}^{3} \int_{1}^{2} x+3 y+1 d y d x=\int_{0}^{3}\left[x y+\frac{3 y^{2}}{2}+y\right]_{1}^{2} d x=\int_{0}^{3} x+\frac{11}{2} d x=\left[\frac{x^{2}}{2}+\frac{11 x}{2}\right]_{0}^{3}=\frac{9}{2}+\frac{33}{2} \\
=21
\end{aligned}
\end{aligned}
$$

## Problem 11.

Two paraboloids

$$
z=(x-2)^{2}+(y-2)^{2}
$$

and

$$
z=20-x^{2}-y^{2}
$$

intersect along a curve $C$. Find the point of $C$ which is closest to the point $(1,1,0)$.
Solution: We minimize the function

$$
f(x, y, z)=(x-1)^{2}+(y-1)^{2}+z^{2}
$$

subject to the constraints

$$
g_{1}(x, y, z)=(x-2)^{2}+(y-2)^{2}-z=0, g_{2}(x, y, z)=20-x^{2}-y^{2}-z=0 .
$$

We find

$$
\begin{gathered}
\nabla f=2(x-1, y-1, z) \\
\nabla g_{1}=(2(x-2), 2(y-2),-1), \nabla g_{2}=(-2 x,-2 y,-1) .
\end{gathered}
$$

Therefore, we must have that

$$
\nabla f=\lambda \nabla g_{1}+\mu \nabla g_{2}
$$

which gives

$$
\begin{gathered}
2(x-1)=2(x-2) \lambda-2 x \mu \\
2(y-1)=2(y-2) \lambda-2 y \mu \\
2 z=-\lambda-\mu .
\end{gathered}
$$

The first equation gives

$$
x(\lambda-\mu-1)=2 \lambda-1
$$

while the second gives

$$
y(\lambda-\mu-1)=2 \lambda-1
$$

If

$$
\lambda-\mu-1=0
$$

we must have $2 \lambda-1=0$ hence $\lambda=\frac{1}{2}$ and this $\mu=-\frac{1}{2}$. This yields via the third equation $z=0$ hence $x=y=2$ because $g_{1}=0$. This set of numbers does not satisfy the second constraint $g_{2}=0$. Thus

$$
\lambda-\mu-1 \neq 0 \Longrightarrow x=y=\frac{2 \lambda-1}{\lambda-\mu-1} .
$$

The two constraints $g_{1}$ and $g_{2}$ become
$z=2(x-2)^{2}=20-2 x^{2} \Longrightarrow x^{2}+(x-2)^{2}=10 \Longrightarrow x^{2}-2 x=3 \Longrightarrow(x-1)^{2}=4 \Longrightarrow x=-1$ or 3 .
When

$$
x=y=-1 \Longrightarrow z=18
$$

which gives $f(-1,-1,18)=4+4+18^{2}$. When

$$
x=y=3 \Longrightarrow z=2
$$

which gives $f(3,3,2)=4+4+4=12$. The point we are searching is $(3,3,2)$.

