
MATH 20C - PRACTICE PROBLEMS FOR MIDTERM II

1. Find the critical points of the function

f(x, y) = 2x3 − 3x2y − 12x2 − 3y2

and determine their type i.e. local min/local max/saddle point.

2. Determine the global max and min of the function

f(x, y) = x2 − 2x+ 2y2 − 2y + 2xy

over the compact region

−1 ≤ x ≤ 1, 0 ≤ y ≤ 2.

3. Using Lagrange multipliers, optimize the function

f(x, y) = x2 + (y + 1)2

subject to the constraint

2x2 + (y − 1)2 ≤ 18.

4. Consider the function

w = ex
2y

where

x = u
√
v, y =

1

uv2
.

Using the chain rule, compute the derivatives

∂w

∂u
,
∂w

∂v
.

5. Consider the function f(x, y) = x2

y4
.

(i) Carefully draw the level curve passing through (1,−1). On this graph, draw the gradient

of the function at (1,−1).

(ii) Compute the directional derivative of f at (1,−1) in the direction u =
(
4
5 ,

3
5

)
. Use this

calculation to estimate

f((1,−1) + .01u).

(iii) Find the unit direction v of steepest descent for the function f at (1,−1).

(iv) Find the two unit directions w for which the directional derivative Dwf = 0.

6. Consider the function

f(x, y) = x4y3.

(i) Write down the equation of the tangent plane at the graph of the function at the point

(1, 1, 1).



(ii) Write down an expression for the change, ∆z, in z = f(x, y) depending on ∆x and ∆y,

the change in x and y, respectively, near the point x = y = 1. Is the function f(x, y) more

sensitive to a change in x or to a change in y?

(iii) Using your answer to (ii), find the approximate value of f(1.01, 1.01).

7. Show that the surfaces

z = 7x2 − 12x− 5y2 and xyz2 = 2

intersect orthogonally at the point (2, 1, −1). That is, show that the tangent planes to the two

surfaces are perpendicular.

8. Evaluate
∫∫
D 3ydA, where D is the region bounded by

xy2 = 1, y = x, x = 0, y = 3.

9. Evaluate ∫ π

0

∫ π

y

sin(x)

x
dxdy.

10. Find the volume of the region bounded on top by the plane z = x+ 3y + 1, on the bottom

by the xy-plane, and on the sides by the planes x = 0, x = 3, y = 1, y = 2.

11. (Harder, solve only after looking at problems 1-10) Two paraboloids

z = (x− 2)2 + (y − 2)2

and

z = 20− x2 − y2

intersect along a curve C. Find the point of C which is closest to the point (1, 1, 0).



SOLUTIONS

Problem 1.

Find the critical points of the function

f(x, y) = 2x3 − 3x2y − 12x2 − 3y2

and determine their type i.e. local min/local max/saddle point. Are there any global min/max?

Solution: Partial derivatives

fx = 6x2 − 6xy − 24x, fy = −3x2 − 6y.

To find the critical points, we solve

fx = 0 =⇒ x2 − xy − 4x = 0 =⇒ x(x− y − 4) = 0 =⇒ x = 0 or x− y − 4 = 0

fy = 0 =⇒ x2 + 2y = 0.

When x = 0 we find y = 0 from the second equation. In the second case, we solve the system below

by substitution

x− y − 4 = 0, x2 + 2y = 0 =⇒ x2 + 2x− 8 = 0

=⇒ x = 2 or x = −4 =⇒ y = −2 or y = −8.

The three critical points are

(0, 0), (2,−2), (−4,−8).

To find the nature of the critical points, we apply the second derivative test. We have

A = fxx = 12x− 6y − 24, B = fxy = −6x, C = fyy = −6.

At the point (0, 0) we have

fxx = −24, fxy = 0, fyy = −6 =⇒ AC −B2 = (−24)(−6)− 0 > 0 =⇒ (0, 0)is local max .

Similarly, we find

(2,−2) is a saddle point

since

AC −B2 = (12)(−6)− (−12)2 =< 0

and

(−4,−8) is saddle

since

AC −B2 = (−24)(−6)− (24)2 < 0.

Problem 2.

Determine the global max and min of the function

f(x, y) = x2 − 2x+ 2y2 − 2y + 2xy



over the compact region

−1 ≤ x ≤ 1, 0 ≤ y ≤ 2.

Solution: We look for the critical points in the interior:

∇f = (2x− 2 + 2y, 4y − 2 + 2x) = (0, 0) =⇒ 2x− 2 + 2y = 4y − 2 + 2x = 0 =⇒ y = 0, x = 1.

However, the point (1, 0) is not in the interior so we discard it for now.

We check the boundary. There are four lines to be considered:

• the line x = −1:

f(−1, y) = 3 + 2y2 − 4y.

The critical points of this function of y are found by setting the derivative to zero:

∂

∂y
(3 + 2y2 − 4y) = 0 =⇒ 4y − 4 = 0 =⇒ y = 1 with f(−1, 1) = 1 .

• the line x = 1:

f(1, y) = 2y2 − 1.

Computing the derivative and setting it to 0 we find the critical point y = 0. The corre-

sponding point (1, 0) is one of the corners, and we will consider it separately below.

• the line y = 0:

f(x, 0) = x2 − 2x.

Computing the derivative and setting it to 0 we find 2x− 2 = 0 =⇒ x = 1. This gives the

corner (1, 0) as before.

• the line y = 2:

f(x, 2) = x2 + 2x+ 4

with critical point x = −1 which is again a corner.

Finally, we check the four corners

(−1, 0), (1, 0), (−1, 2), (1, 2).

The values of the function f are

f(−1, 0) = 3 , f(1, 0) = −1 , f(−1, 2) = 3 , f(1, 2) = 7 .

From the boxed values we select the lowest and the highest to find the global min and global max.

We conclude that

global minimum occurs at (1, 0)

global maximum occurs at (1, 2).



Problem 3.

Using Lagrange multipliers, optimize the function

f(x, y) = x2 + (y + 1)2

subject to the constraint

2x2 + (y − 1)2 ≤ 18.

Solution: We check for the critical points in the interior

fx = 2x, fy = 2(y + 1) =⇒ (0,−1) is a critical point .

The second derivative test

fxx = 2, fyy = 2, fxy = 0

shows this a local minimum with

f(0,−1) = 0 .

We check the boundary

g(x, y) = 2x2 + (y − 1)2 = 18

via Lagrange multipliers. We compute

∇f = (2x, 2(y + 1)) = λ∇g = λ(4x, 2(y − 1)).

Therefore

2x = 4xλ =⇒ x = 0 or λ =
1

2
2(y + 1) = 2λ(y − 1).

In the first case x = 0 we get

g(0, y) = (y − 1)2 = 18 =⇒ y = 1 + 3
√

2, 1− 3
√

2

with values

f(0, 1 + 3
√

2) = (2 + 3
√

2)2 , f(0, 1− 3
√

2) = (2− 3
√

2)2 .

In the second case λ = 1
2 we obtain from the second equation

2(y + 1) = y − 1 =⇒ y = −3.

Now,

g(x, y) = 18 =⇒ x = ±1.

At (±1,−3), the function takes the value

f(±1,−3) = (±1)2 + (−3 + 1)2 = 5.

By comparing all boxed values, it is clear the (0,−1) is the minimum, while (0, 1 + 3
√

2) is the

maximum.



Problem 4.

Consider the function

w = ex
2y

where

x = u
√
v, y =

1

uv2
.

Using the chain rule, compute the derivatives

∂w

∂u
,
∂w

∂v
.

Solution: We have

∂w

∂x
= 2xy exp(x2y) = 2u

√
v

1

uv2
exp

(
u2v · 1

uv2

)
=

2

v3/2
exp

(u
v

)
∂w

∂y
= x2 exp(x2y) = u2v exp

(u
v

)
∂x

∂u
=
√
v,

∂x

∂v
=

u

2
√
v

∂y

∂u
= − 1

u2v2
,
∂y

∂v
= − 2

uv3
.

Thus
∂w

∂u
=
∂w

∂x
· ∂x
∂u

+
∂w

∂y
· ∂y
∂u

=
2

v3/2
exp

(u
v

)
·
√
v − u2v exp

(u
v

)
· 1

u2v2
=

=
2

v
exp

(u
v

)
− 1

v
exp

(u
v

)
=

1

v
exp

(u
v

)
.

Similarly,
∂w

∂u
=
∂w

∂x
· ∂x
∂u

+
∂w

∂y
· ∂y
∂u

= − u

v2
exp

(u
v

)
.

Problem 5.

Consider the function f(x, y) = x2

y4
.

(i) Carefully draw the level curve passing through (1,−1). On this graph, draw the gradient of

the function at (1,−1).

(ii) Compute the directional derivative of f at (1,−1) in the direction u =
(
4
5 ,

3
5

)
. Use this

calculation to estimate

f((1,−1) + .01u).

(iii) Find the unit direction v of steepest descent for the function f at (1,−1).

(iv) Find the two unit directions w for which the directional derivative Dwf = 0.



Solution:

(i) The level is f(1, 1) = 1. The level curve is

f(x, y) = f(1, 1) = 1 =⇒ x2 = y4 =⇒ x = ±y2.

The level curve is a union of two parabolas through the origin. The gradient

∇f =

(
2x

y4
,
−4x2

y5

)
=⇒ ∇f(1,−1) = (2, 4)

is normal to the parabolas.

(ii) We compute

fu = ∇f · u = (2, 4) ·
(

4

5
,
3

5

)
= 4.

For the approximation, we have f(1,−1) = 1 and

f((1,−1) + .01u) ≈ f(1,−1) + .01fu = 1 + .01 · 4 = 1.04.

(iii) The direction of steepest decrease is opposite to the gradient. We need to divide by the

length to get a unit vector:

v = − ∇f
||∇f ||

= − (2, 4)√
22 + 42

=

(
− 1√

5
,− 2√

5

)
.

(iv) Write

w = (w1, w2).

We have

fw = ∇f ·w = (2, 4) ·w = 2w1 + 4w2 = 0 =⇒ w1 = −2w2.

Since w has unit length

w2
1 + w2

2 = 1 =⇒ (−2w2)
2 + w2

2 = 1 =⇒ w2 = ± 1√
5
.

Therefore

w = ±
(
−2√

5
,

1√
5

)
.

Problem 6.

Consider the function

f(x, y) = x4y3.

(i) Write down the equation of the tangent plane at the graph of the function at the point

(1, 1, 1).

(ii) Write down an expression for the change, ∆z, in z = f(x, y) depending on ∆x and ∆y,

the change in x and y, respectively, near the point x = y = 1. Is the function f(x, y) more

sensitive to a change in x or to a change in y?

(iii) Using your answer to (ii), find the approximate value of f(1.01, 1.02).



Solution:

(i) We compute

fx = 4x3y3 =⇒ fx(1, 1) = 4

fy = 3x4y2 =⇒ fy(1, 1) = 3.

The tangent plane is

z − 1 = 4(x− 1) + 3(y − 1) =⇒ 4x+ 3y − z = 6.

(ii)

∆z = 4∆x+ 3∆y.

The function is more sensitive to a change in x because the x derivative at (1, 1) is higher.

(iii) We have

∆x = 1.01− 1 = .01,∆y = 1.02− 1 = .02,

hence

∆z = 4(.01) + 3(.02) = .1.

This gives

z(1.01, 1.02) = z(1, 1) + ∆z = 1.1 =⇒ f(1.01, 1.02) ≈ 1.1.

Problem 7.

Show that the surfaces

z = 7x2 − 12x− 5y2 and xyz2 = 2

intersect orthogonally at the point (2, 1, −1). That is, show that the tangent planes to the two

surfaces are perpendicular.

Solution: The first surface is determined by z = 7x2 − 12x− 5y2, which can be viewed as the

level surface

f(x, y, z) = 7x2 − 12x− 5y2 − z = 0.

The normal vector is given by the gradient at (2, 1,−1):

∇f = (14x− 12,−10y,−1) = (−16, 10, 1).

The second surface is the level set determined by g(x, y, z) = xyz2 = 2. A normal vector at

(2, 1, −1) is

∇g = (yz2, xz2,+2xyz) = (1, 2,−4).

The dot product of these two normal vectors is 0:

∇f · ∇g = (−16, 10, 1) · (1, 2,−4) = 0.

Since the normals are perpendicular, the surfaces are orthogonal at (2, 1, −1).



Problem 8.

Evaluate
∫∫
D 3ydA, where D is the region bounded by

xy2 = 1, y = x, x = 0, y = 3.

Solution:∫∫
D

3y dA =

∫ 1
9

0

∫ 3

x
3y dydx+

∫ 1

1
9

∫ 1√
x

x
3y dydx =

∫ 1
9

0

[
3y2

2

]3
x

dx+

∫ 1

1
9

[
3y2

2

] 1√
x

x

dx =

=

∫ 1
9

0

(
27− 3x2

2

)
dx+

∫ 1

1
9

(
3− 3x3

2x

)
dx =

[
27x− x3

2

] 1
9

0

+

[
3 ln |x| − x3

2

]1
1
9

= 1 + 3 ln 3 .

Problem 9.

Evaluate ∫ π

0

∫ π

y

sin(x)

x
dxdy.

Solution: Changing the order of integration, we obtain:∫ π

0

∫ π

y

sin(x)

x
dxdy =

∫ π

o

∫ x

0

sin(x)

x
dydx =

∫ π

0

[
y

sin(x)

x

]x
0

dx =

∫ π

0
sin(x)dx =

[
− cos(x)

]π
0

= 2 .

Problem 10.

Find the volume of the region bounded on top by the plane z = x+ 3y + 1, on the bottom by the

xy-plane, and on the sides by the planes x = 0, x = 3, y = 1, y = 2.

Solution:∫ 3

0

∫ 2

1
x+ 3y + 1 dy dx =

∫ 3

0

[
xy +

3y2

2
+ y

]2
1

dx =

∫ 3

0
x+

11

2
dx =

[
x2

2
+

11x

2

]3
0

=
9

2
+

33

2

= 21 .

Problem 11.

Two paraboloids

z = (x− 2)2 + (y − 2)2

and

z = 20− x2 − y2



intersect along a curve C. Find the point of C which is closest to the point (1, 1, 0).

Solution: We minimize the function

f(x, y, z) = (x− 1)2 + (y − 1)2 + z2

subject to the constraints

g1(x, y, z) = (x− 2)2 + (y − 2)2 − z = 0, g2(x, y, z) = 20− x2 − y2 − z = 0.

We find

∇f = 2(x− 1, y − 1, z)

∇g1 = (2(x− 2), 2(y − 2),−1), ∇g2 = (−2x,−2y,−1).

Therefore, we must have that

∇f = λ∇g1 + µ∇g2
which gives

2(x− 1) = 2(x− 2)λ− 2xµ

2(y − 1) = 2(y − 2)λ− 2yµ

2z = −λ− µ.
The first equation gives

x(λ− µ− 1) = 2λ− 1

while the second gives

y(λ− µ− 1) = 2λ− 1.

If

λ− µ− 1 = 0

we must have 2λ − 1 = 0 hence λ = 1
2 and this µ = −1

2 . This yields via the third equation z = 0

hence x = y = 2 because g1 = 0. This set of numbers does not satisfy the second constraint g2 = 0.

Thus

λ− µ− 1 6= 0 =⇒ x = y =
2λ− 1

λ− µ− 1
.

The two constraints g1 and g2 become

z = 2(x−2)2 = 20−2x2 =⇒ x2+(x−2)2 = 10 =⇒ x2−2x = 3 =⇒ (x−1)2 = 4 =⇒ x = −1 or 3.

When

x = y = −1 =⇒ z = 18

which gives f(−1,−1, 18) = 4 + 4 + 182. When

x = y = 3 =⇒ z = 2

which gives f(3, 3, 2) = 4 + 4 + 4 = 12. The point we are searching is (3, 3, 2).


