Math 20D - Fall 2017 - Midterm II

(1) Linear second order equations.
 (i) Inhomogeneous equations: General solution $y = y_p + y_h$, where y_p is the particular solution, y_h is the homogeneous solution.
 (ii) Find a particular solution by undetermined coefficients
 $y'' + py' + qy = g(t)$.

 Three cases: $g(t)$ can be exponential, trigonometric, polynomial.
 * For $g(t)$ polynomial, look for y_p as a polynomial with undetermined coefficients. Try to guess its degree first.
 * For trigonometric $g(t)$, look for $y_p = A\cos t + B\sin t$.
 * For exponential case $g(t) = e^{at}$, use $y_p = Cte^{at}$ or $y_p = Ct^2e^{at}$ in such a fashion that you do not replicate homogeneous terms.
 * For a term $g(t) = e^{at} \times$ polynomial or trigonometric function, substitute $y = e^{at}u$, find the differential equation for u, then solve for u by undetermined coefficients.
 (iii) Alternatively, you may use variation of parameters
 $y = u_1(t)y_1(t) + u_2(t)y_2(t)$
 where
 $u_1(t) = -\int \frac{y_2(t)g(t)}{W(y_1, y_2)} dt$, $u_2(t) = \int \frac{y_1(t)g(t)}{W(y_1, y_2)} dt$.

(2) First order systems of equations
 $x' = Ax$.
 (i) Find eigenvalues λ_1, λ_2 of A:
 $\det(A - \lambda I) = 0$.
 Eigenvectors v are found by solving the system
 $(A - \lambda I)v = 0$.
 (ii) Fundamental pair of solutions: the Wronskian
 $W(x_1, x_2)(t) = \begin{vmatrix} x_1(t) & x_2(t) \end{vmatrix} \neq 0$.
 For a fundamental pair, the general solution is
 $x = c_1x_1 + c_2x_2$.
 (iii) Finding solutions: find eigenvalues λ_1, λ_2 with eigenvectors v_1 and v_2. General solution
 $x = c_1e^{\lambda_1 t}v_1 + c_2e^{\lambda_2 t}v_2$.
 (iv) Phase portraits. Distinct eigenvalues:
 * saddles (real eigenvalues of opposite sign)
 * nodes (sink or source) (real eigenvalues of same sign)
 * spiral (sink or source) (complex eigenvalues). To find the direction of spirals compute the velocity vector at a point on the trajectory.