Math 20D - Spring 2017 - Midterm I

Name: ________________________________

Student ID: __________________________

Section time: _________________________

Instructions:

Please print your name, student ID and section time.

During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most a page, front only.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 5 questions which are worth 50 points. You have 50 minutes to complete the test.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
Problem 1. [10 points.]

The differential equation

\[(2x \sin y + y^2) + (x^2 \cos y + 2xy + e^y)y' = 0, \quad y(0) = 0\]

is exact (you do not need to check this). Solve this initial value problem.

(You can leave the answer in implicit form, without solving explicitly for y.)
Problem 2. [10 points.]

Consider the autonomous differential equation
\[
\frac{dy}{dt} = y^2 - 4y + 3.
\]
Determine the critical points and indicate their type i.e. asymptotically stable, unstable, semistable. What is the long-term behavior of the solution satisfying the initial value \(y(0) = 2 \)?
Problem 3. [10 points.]

Find the solution to the initial value problem

\[t^3 y' + 5t^2 y = 3, \quad y(-1) = 2. \]

What is the largest interval over which the solution is defined?
Problem 4. [10 points.]

Write down the general solution of the differential equation

\[y'' + 4y' + 5y = 0 \]

and sketch its graph.
Problem 5. [10 points.]

A swimming pool originally contains 200 gallons of water and 50lb of salt. Water containing 4 lb of salt per gallon is poured into the pool at a rate of 2 gal/min. The mixture is simultaneously allowed to leave the pool at the same rate. Find the amount of salt in the pool at time t.