HW 2 - SOLUTIONS

Q1. We have the following generalized hypergeometric series

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!} .
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)$. The following are special cases :

- ${ }_{0} F_{0}(; ; z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=e^{z}$
- Note that

$$
(3 / 2)_{n}=\frac{3 \cdot 5 \cdots(2 n+1)}{2^{n}}=\frac{(2 n+1)!}{4^{n}(n)!}
$$

Substituting the above expression, we see that

$$
\begin{aligned}
{ }_{0} F_{1}\left(; \frac{3}{2} ; \frac{-z^{2}}{4}\right) & =\sum_{n=0}^{\infty} \frac{4^{n} n!}{(2 n+1)!} \frac{(-1)^{n} z^{2 n}}{4^{n} n!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n+1)!}=\frac{\sin z}{z}
\end{aligned}
$$

- The next part is very similar, we have

$$
(1 / 2)_{n}=\frac{1 \cdot 3 \cdots(2 n-1)}{2^{n}}=\frac{(2 n)!}{4^{n}(n)!}
$$

which we substitute to obtain

$$
\begin{aligned}
{ }_{0} F_{1}\left(; \frac{3}{2} ; \frac{-z^{2}}{4}\right) & =\sum_{n=0}^{\infty} \frac{4^{n} n!}{(2 n)!} \frac{(-1)^{n} z^{2 n}}{4^{n} n!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}=\cos z
\end{aligned}
$$

- Similarly substituting the values of $(1)_{n}=n$! and $(2)_{n}=(n+1)$! in

$$
\begin{aligned}
z \cdot{ }_{2} F_{1}(1,1 ; 2 ;-z) & =z \cdot \sum_{n=0}^{\infty} \frac{(n!)^{2}}{(n+1)!} \frac{(-z)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n+1}}{(n+1)}=\ln (1+z)
\end{aligned}
$$

Q2. The dilogarithm is defined as

$$
\operatorname{Li}_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

(i) Show that $\mathrm{Li}_{2}(z)$ has radius of convergence $R=1$. Show that Li_{2} can be expressed as a generalized hypergeometric series

$$
\mathrm{Li}_{2}(z)=z \cdot{ }_{3} F_{2}(1,1,1 ; 2,2 ; z)
$$

Proof. The radius of convergence $R=\lim _{n \rightarrow \infty} n^{\frac{-2}{n}}=1$. Using the fact $(1)_{n}=n$! and $(2)_{n}=(n+1)$! we get the required equality :

$$
\begin{aligned}
z \cdot{ }_{3} F_{2}(1,1,1 ; 2,2 ;-z) & =z \cdot \sum_{n=0}^{\infty} \frac{n!n!n!}{(n+1)!(n+1)!} \frac{z^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}=\operatorname{Li}_{2}(z) .
\end{aligned}
$$

(ii) Show that Li_{2} is injective in $\Delta\left(0, \frac{2}{3}\right)$.

Proof. Let $z, w \in \Delta\left(0, \frac{2}{3}\right)$, then

$$
\begin{aligned}
\operatorname{Li}_{2}(z)-\operatorname{Li}_{2}(w) & =\sum_{n=1}^{\infty} \frac{z^{n}-w^{n}}{n^{2}} \\
& =(z-w)\left(1+\sum_{n=2}^{\infty} \frac{\left(z^{n-1}+\cdots+w^{n-1}\right)}{n^{2}}\right)
\end{aligned}
$$

To show Li_{2} is injective, it is enough to show that

$$
1+\sum_{n=2}^{\infty} \frac{\left(z^{n-1}+z^{n-2} w+\cdots+w^{n-1}\right)}{n^{2}} \neq 0
$$

for any pair of numbers $z, w \in \Delta\left(0, \frac{2}{3}\right)$. We show this by proving that the summation in the above expression can not attain absolute value 1 .

Using triangle inequality and the fact $z, w \in \Delta\left(0, \frac{2}{3}\right)$, we obtain the inequality

$$
\left|z^{n-1}+z^{n-2} w+\cdots+w^{n-1}\right|<n\left(\frac{2}{3}\right)^{n-1}
$$

and further use this and uniform convergence to get

$$
\begin{aligned}
\left|\sum_{n=2}^{\infty} \frac{\left(z^{n-1}+z^{n-2} w+\cdots+w^{n-1}\right)}{n^{2}}\right| & <\sum_{n=2}^{\infty} \frac{1}{n}\left(\frac{2}{3}\right)^{n-1} \\
& <\sum_{n=2}^{\infty} \frac{1}{2}\left(\frac{2}{3}\right)^{n-1} \\
& =1
\end{aligned}
$$

Q3. Show that the function $u: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ given by

$$
u(z)=\log |z|
$$

is harmonic, but it is not the real part of a holomorphic function in $\mathbb{C} \backslash\{0\}$.
Proof. Let $\log (z)$ be the standard branch of logarithm defined on $\mathbb{C}^{-}=\mathbb{C} \backslash \mathbb{R}_{\leq 0}$, and let $L_{2}: \mathbb{C}^{+} \rightarrow \mathbb{C}$ be another branch of logarithm, branched as positive real line. Note that $e^{L_{2}(z)}=z$, hence $\left|e^{L_{2}(z)}\right|=e^{\operatorname{Re}\left(L_{2}(z)\right)}=|z|$, therefore $\operatorname{Re}\left(L_{2}(z)\right)=\log |z|$. The same hold for $\log (z)$.

For any $z \neq 0$, either $z \in \mathbb{C}^{-}$or \mathbb{C}^{+}. On any of these open sets, $u(z)$ can be realized as the real part of a holomorphic function, Log or L_{2} respectively, hence u is harmonic.

Suppose f is holomorphic on $\mathbb{C} \backslash\{0\}$ such that $f=u+i v$, where $u(z)=\log |z|$. Therefore,

$$
g(z):=(f-\log)(z) \in\{w: \operatorname{Re}(w)=0\}
$$

on the open set \mathbb{C}^{-}. Using Cauchy-Riemann condition one can show that $g(z)$ is a constant κ. Hence on the open set \mathbb{C}^{-}, we have the identity

$$
f(z)-\kappa=\log (z)
$$

Thus existence of f is equivalent to extending Log to $\mathbb{C} \backslash\{0\}$, which we know is not possible.

Q4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the inversion $f(z)=\frac{1}{z}$.
(i) Let C be the circle of radius r centered at the origin. Show that $f(C)$ is a circle of radius $1 / r$ centered at the origin.

Proof. Let C^{\prime} be the circle of radius $1 / r$ centered at the origin. For any $z \in C, f(z) \in C^{\prime}$ since $|f(z)|=\frac{1}{|z|}=\frac{1}{r}$. Similarly, for any $w \in C^{\prime}$, $f(w) \in C$ for any z in C or C^{\prime}. Moreover we know that $f(f(z))=z$, therefore the restriction $\left.f\right|_{C}: C \rightarrow C^{\prime}$ is a bijection because $\left.f\right|_{C^{\prime}}: C^{\prime} \rightarrow C$ is its inverse.

If we assume that Möbius transformations map generalized circles onto generalized circles, we do not need the above arguments.
(ii) Let C be the circle of center $z_{0} \neq 0$ and radius $r \neq z_{0}$. Show that $f(C)$ is the circle C^{\prime} of center $w_{0}=\frac{\bar{z}_{0}}{\left|z_{0}\right|^{2}-r^{2}}$ and radius $R=\frac{r}{\left|z_{0}\right|^{2}-r^{2}}$.

Figure 1. The blue circles and the red circles are inverses with respect to the map $z \rightarrow \frac{1}{z}$. Red circles have radius 2 and 1 and center $(4,2)$ and $(2,1)$ respectively. The biggest red circle 'inverts' to the smallest blue cirlce.

Proof. An arbitrary point $z \in C$ satisfy $\left|z-z_{0}\right|=r$ which implies $r^{2}=$ $\left(z-z_{0}\right) \overline{\left(z-z_{0}\right)}=\bar{z}\left(z-z_{0}\right)+\left(\left|z_{0}\right|^{2}-z \bar{z}_{0}\right)$. Using this we get

$$
\begin{aligned}
\left|f(z)-w_{0}\right| & =\left|\frac{1}{z}-\frac{\bar{z}_{0}}{\left|z_{0}\right|^{2}-r^{2}}\right| \\
& =\left|\frac{\left|z_{0}\right|^{2}-r^{2}-z \bar{z}_{0}}{z\left(\left|z_{0}\right|^{2}-r^{2}\right)}\right| \\
& =\frac{|\bar{z}| \cdot\left|z-z_{0}\right|}{|z|\left(\left|z_{0}\right|^{2}-r^{2}\right)}=R .
\end{aligned}
$$

The rest follows using the arguments in part (i).
(iii) Let C be the circle of center $z_{0} \neq 0$ and radius $r=\left|z_{0}\right|$. Show that $f(C)$ is the line $\left\{w: \operatorname{Re}\left(w z_{0}\right)=\frac{1}{2}\right\} \cup\{\infty\}$.

Proof. An arbitrary point $z \in C \backslash\{0\}$ satisfy $\left|z-z_{0}\right|=\left|z_{0}\right|$, therefore $\bar{z}_{0} z_{0}=$ $\left(z-z_{0}\right) \overline{\left(z-z_{0}\right)}$ which implies $|z|^{2}=z \bar{z}_{0}+z_{0} \bar{z}$. Observe that

$$
f(z) z_{0}+\overline{f(z) z_{0}}=\frac{z \bar{z}_{0}+\bar{z} z_{0}}{|z|^{2}}=1
$$

which implies $\operatorname{Re}\left(f(z) z_{0}\right)=\frac{1}{2}$. Moreover $z=0$ goes to ∞, hence $f(z) \in$ $\left\{w: \operatorname{Re}\left(w z_{0}\right)=\frac{1}{2}\right\} \cup\{\infty\}$ for $z \in C$. The rest of the argument is same.

Q5. For $a \in(-1,1)$, let $D_{a}=\{z:|z|<1, \operatorname{Im} z>a\}$. For each such a, either find a Möbius transformation of D_{a} onto the first quadrant Q, or show that such a transformation cannot exist.

Proof. We will show that there is a Möbius transformation mapping D_{a} onto first quadrant if and only if $a=0$.

- Explicit map when $a=0$: Consider the Möbius transformation which sends the points $(0,-1,1)$ to $(1,0, \infty)$ which can be explicitly calculated as

$$
f(z)=\frac{1+z}{1-z}
$$

This is in fact equal to $-i C^{-1}$ where $C^{-1}: \Delta(0,1) \rightarrow \mathfrak{h}^{+}$is the Cayley transform introduced in class.

We claim that $f\left(D_{0}\right)=Q$. This comes down to showing that

$$
\operatorname{Im} z>0, \quad|z|<1 \Longleftrightarrow \frac{1+z}{1-z} \in Q
$$

Indeed,

$$
\frac{1+z}{1-z}=\frac{(1+z)(1-\bar{z})}{|1-z|^{2}}=\frac{1-|z|^{2}+(z-\bar{z})}{|1-z|^{2}}=\frac{1-|z|^{2}+2 i \operatorname{Im} z}{|1-z|^{2}}
$$

The above expression is in Q iff its real and imaginary parts are positive. This is equivalent to $|z|<1$ and $\operatorname{Im} z>0$.

- No such Möbius transformation exist when $a \neq 0$: Firstly observe that D_{a} is still intersection of inside of two generalized circles C_{1} and C_{2}. Although when $a \neq 0$ the two circles intersect at angle θ different from $\pi / 2$. Let f be a Möbius transformation, hence conformal (respects angles), it sends D_{a} to the region which is in the intersection of insides of the circles

Figure 2.
$f\left(C_{1}\right)$ and $f\left(C_{2}\right)$ which intersect at angle θ. Since Q is intersection of inside region of generalized circles $(x=0$ and $y=0)$ intersection at angle $\pi / 2$ while $f\left(C_{1}\right)$ and $f\left(C_{2}\right)$ intersect at angle θ, we conclude $Q \neq f\left(D_{a}\right)$.

Q6. Give an example of a biholomorphism between the strip $D=\{z:-\pi<\operatorname{Im} z<$ $\pi\}$ and the slit complex plane $\mathbb{C}^{-}=\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.

Proof. As the problem suggest, we have a natural map $f: D \rightarrow \mathbb{C}^{-}$given by $f(z)=e^{z}$. Note that f is a holomorphic map and $f(D)=\mathbb{C}^{-}$since $e^{z} \in \mathbb{R}_{\leq 0}$ iff $\operatorname{Im} z$ is an odd multiple of π. Moreover the standard branch defined on \mathbb{C}^{-}is, by construction, is its inverse and it is holomorphic.

Q7. The arctangent is defined by the power series

$$
\arctan z=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\cdots
$$

with radius of convergence $R=1$. Show that

$$
\arctan z=\frac{1}{2 i} \log \frac{1+z i}{1-z i}
$$

for $z \in \Delta(0,1)$.
Proof. The radius of convergence of the arctan series is

$$
R=\lim _{n \rightarrow \infty} \sqrt[n]{2 n+1}=1
$$

so the left hand side is well defined. We also need to check that the right hand side is well-defined, that is, we need to check that

$$
\frac{1+z i}{1-z i} \in \mathbb{C}^{-}
$$

Assume for a contradiction that

$$
\frac{1+z i}{1-z i}=-u, \quad u \in \mathbb{R}_{\geq 0} \Longleftrightarrow z=i \frac{1+u}{1-u}
$$

Since $|z|<1$ it follows that

$$
|1+u|<|1-u| \Longleftrightarrow(1+u)^{2}<(1-u)^{2} \Longleftrightarrow u<0
$$

a contradiction. Next, we see that the first derivative on both sides is $\frac{1}{1+z^{2}}$:

$$
\begin{aligned}
\frac{d}{d z} \arctan z & =\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{n!}=\frac{1}{1+z^{2}} \\
\frac{d}{d z} \frac{1}{2 i} \log \frac{1+z i}{1-z i} & =\frac{1}{2 i}\left(\frac{i}{1-z i}+\frac{i}{1+z i}\right)=\frac{1}{1+z^{2}}
\end{aligned}
$$

Thus difference of the functions must be a constant. Since the initial values at $z=0$ agree

$$
\arctan 0=0=\frac{1}{2 i} \log 1
$$

the given two functions must be the same.

