
HW 2 - SOLUTIONS

Q1. We have the following generalized hypergeometric series

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
.

where (a)n = a(a+ 1) · · · (a+ n− 1). The following are special cases :

• 0F0(; ; z) =
∑∞

n=0
zn

n! = ez

• Note that

(3/2)n =
3 · 5 · · · (2n+ 1)

2n
=

(2n+ 1)!

4n(n)!

Substituting the above expression, we see that

0F1(;
3

2
;
−z2

4
) =

∞∑
n=0

4nn!

(2n+ 1)!

(−1)nz2n

4nn!

=

∞∑
n=0

(−1)nz2n

(2n+ 1)!
=

sin z

z

• The next part is very similar, we have

(1/2)n =
1 · 3 · · · (2n− 1)

2n
=

(2n)!

4n(n)!
,

which we substitute to obtain

0F1(;
3

2
;
−z2

4
) =

∞∑
n=0

4nn!

(2n)!

(−1)nz2n

4nn!

=

∞∑
n=0

(−1)nz2n

(2n)!
= cos z

• Similarly substituting the values of (1)n = n! and (2)n = (n+ 1)! in

z · 2F1(1, 1; 2;−z) = z ·
∞∑

n=0

(n!)2

(n+ 1)!

(−z)n

n!

=

∞∑
n=0

(−1)nzn+1

(n+ 1)
= ln(1 + z)

Q2. The dilogarithm is defined as

Li2(z) =

∞∑
n=1

zn

n2

(i) Show that Li2(z) has radius of convergence R = 1. Show that Li2 can be
expressed as a generalized hypergeometric series

Li2(z) = z · 3F2(1, 1, 1; 2, 2; z).
1
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Proof. The radius of convergence R = limn→∞ n
−2
n = 1. Using the fact (1)n = n!

and (2)n = (n+ 1)! we get the required equality :

z · 3F2(1, 1, 1; 2, 2;−z) = z ·
∞∑

n=0

n!n!n!

(n+ 1)!(n+ 1)!

zn

n!

=

∞∑
n=1

zn

n2
= Li2(z).

�

(ii) Show that Li2 is injective in ∆(0, 2
3 ).

Proof. Let z, w ∈ ∆(0, 2
3 ), then

Li2(z)− Li2(w) =

∞∑
n=1

zn − wn

n2

= (z − w)

(
1 +

∞∑
n=2

(zn−1 + · · ·+ wn−1)

n2

)
To show Li2 is injective, it is enough to show that

1 +

∞∑
n=2

(zn−1 + zn−2w + · · ·+ wn−1)

n2
6= 0

for any pair of numbers z, w ∈ ∆(0, 2
3 ). We show this by proving that the summation

in the above expression can not attain absolute value 1.
Using triangle inequality and the fact z, w ∈ ∆(0, 2

3 ), we obtain the inequality

|zn−1 + zn−2w + · · ·+ wn−1| < n

(
2

3

)n−1

,

and further use this and uniform convergence to get∣∣∣∣ ∞∑
n=2

(zn−1 + zn−2w + · · ·+ wn−1)

n2

∣∣∣∣ < ∞∑
n=2

1

n

(
2

3

)n−1

<

∞∑
n=2

1

2

(
2

3

)n−1

= 1.

�

Q3. Show that the function u : C\{0} → R given by

u(z) = log |z|
is harmonic, but it is not the real part of a holomorphic function in C\{0}.

Proof. Let Log(z) be the standard branch of logarithm defined on C− = C\R≤0,
and let L2 : C+ → C be another branch of logarithm, branched as positive real line.
Note that eL2(z) = z, hence |eL2(z)| = eRe(L2(z)) = |z|, therefore Re(L2(z)) = log |z|.
The same hold for Log(z).

For any z 6= 0, either z ∈ C− or C+. On any of these open sets, u(z) can be
realized as the real part of a holomorphic function, Log or L2 respectively, hence u
is harmonic.
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Suppose f is holomorphic on C\{0} such that f = u+ iv, where u(z) = log |z|.
Therefore,

g(z) := (f − Log)(z) ∈ {w : Re(w) = 0}

on the open set C−. Using Cauchy-Riemann condition one can show that g(z) is a
constant κ. Hence on the open set C−, we have the identity

f(z)− κ = Log(z).

Thus existence of f is equivalent to extending Log to C\{0}, which we know is not
possible. �

Q4. Let f : C→ C be the inversion f(z) = 1
z .

(i) Let C be the circle of radius r centered at the origin. Show that f(C) is a
circle of radius 1/r centered at the origin.

Proof. Let C ′ be the circle of radius 1/r centered at the origin. For any
z ∈ C, f(z) ∈ C ′ since |f(z)| = 1

|z| = 1
r . Similarly, for any w ∈ C ′,

f(w) ∈ C for any z in C or C ′. Moreover we know that f(f(z)) = z,
therefore the restriction f |C : C → C ′ is a bijection because f |C′ : C ′ → C
is its inverse.

If we assume that Möbius transformations map generalized circles onto
generalized circles, we do not need the above arguments. �

(ii) Let C be the circle of center z0 6= 0 and radius r 6= z0. Show that f(C) is
the circle C ′ of center w0 = z̄0

|z0|2−r2 and radius R = r
|z0|2−r2 .

Figure 1. The blue circles and the red circles are inverses with
respect to the map z → 1

z . Red circles have radius 2 and 1 and
center (4, 2) and (2, 1) respectively. The biggest red circle ‘inverts’
to the smallest blue cirlce.
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Proof. An arbitrary point z ∈ C satisfy |z − z0| = r which implies r2 =

(z − z0)(z − z0) = z̄(z − z0) + (|z0|2 − zz̄0). Using this we get

|f(z)− w0| =
∣∣∣∣1z − z̄0

|z0|2 − r2

∣∣∣∣
=

∣∣∣∣ |z0|2 − r2 − zz̄0

z(|z0|2 − r2)

∣∣∣∣
=
|z̄| · |z − z0|
|z|(|z0|2 − r2)

= R.

The rest follows using the arguments in part (i). �

(iii) Let C be the circle of center z0 6= 0 and radius r = |z0|. Show that f(C) is
the line {w : Re(wz0) = 1

2} ∪ {∞}.

Proof. An arbitrary point z ∈ C\{0} satisfy |z−z0| = |z0|, therefore z̄0z0 =

(z − z0)(z − z0) which implies |z|2 = zz̄0 + z0z̄. Observe that

f(z)z0 + f(z)z0 =
zz̄0 + z̄z0

|z|2
= 1,

which implies Re(f(z)z0) = 1
2 . Moreover z = 0 goes to ∞, hence f(z) ∈

{w : Re(wz0) = 1
2}∪{∞} for z ∈ C. The rest of the argument is same. �

Q5. For a ∈ (−1, 1), let Da = {z : |z| < 1, Imz > a}. For each such a, either
find a Möbius transformation of Da onto the first quadrant Q, or show that such a
transformation cannot exist.

Proof. We will show that there is a Möbius transformation mapping Da onto first
quadrant if and only if a = 0.

• Explicit map when a = 0 : Consider the Möbius transformation which
sends the points (0,−1, 1) to (1, 0,∞) which can be explicitly calculated as

f(z) =
1 + z

1− z
.

This is in fact equal to −iC−1 where C−1 : ∆(0, 1) → h+ is the Cayley
transform introduced in class.

We claim that f(D0) = Q. This comes down to showing that

Im z > 0, |z| < 1 ⇐⇒ 1 + z

1− z
∈ Q.

Indeed,

1 + z

1− z
=

(1 + z)(1− z̄)
|1− z|2

=
1− |z|2 + (z − z̄)

|1− z|2
=

1− |z|2 + 2iImz

|1− z|2
.

The above expression is in Q iff its real and imaginary parts are positive.
This is equivalent to |z| < 1 and Im z > 0.

• No such Möbius transformation exist when a 6= 0 : Firstly observe
that Da is still intersection of inside of two generalized circles C1 and C2.
Although when a 6= 0 the two circles intersect at angle θ different from
π/2. Let f be a Möbius transformation, hence conformal (respects angles),
it sends Da to the region which is in the intersection of insides of the circles
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Figure 2.

f(C1) and f(C2) which intersect at angle θ. Since Q is intersection of inside
region of generalized circles (x = 0 and y = 0) intersection at angle π/2
while f(C1) and f(C2) intersect at angle θ, we conclude Q 6= f(Da).

�

Q6. Give an example of a biholomorphism between the strip D = {z : −π < Imz <
π} and the slit complex plane C− = C\R≤0.

Proof. As the problem suggest, we have a natural map f : D → C− given by
f(z) = ez. Note that f is a holomorphic map and f(D) = C− since ez ∈ R≤0 iff
Imz is an odd multiple of π. Moreover the standard branch defined on C− is, by
construction, is its inverse and it is holomorphic. �

Q7. The arctangent is defined by the power series

arctan z = z − z3

3
+
z5

5
− · · ·

with radius of convergence R = 1. Show that

arctan z =
1

2i
Log

1 + zi

1− zi
for z ∈ ∆(0, 1).

Proof. The radius of convergence of the arctan series is

R = lim
n→∞

n
√

2n+ 1 = 1,

so the left hand side is well defined. We also need to check that the right hand side
is well-defined, that is, we need to check that

1 + zi

1− zi
∈ C−.
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Assume for a contradiction that
1 + zi

1− zi
= −u, u ∈ R≥0 ⇐⇒ z = i

1 + u

1− u
.

Since |z| < 1 it follows that

|1 + u| < |1− u| ⇐⇒ (1 + u)2 < (1− u)2 ⇐⇒ u < 0

a contradiction. Next, we see that the first derivative on both sides is 1
1+z2 :

d

dz
arctan z =

∞∑
n=0

(−1)nz2n

n!
=

1

1 + z2

d

dz

1

2i
Log

1 + zi

1− zi
=

1

2i

(
i

1− zi
+

i

1 + zi

)
=

1

1 + z2
.

Thus difference of the functions must be a constant. Since the initial values at
z = 0 agree

arctan 0 = 0 =
1

2i
Log1,

the given two functions must be the same. �


