HW 2 - SOLUTIONS

Q1. We have the following generalized hypergeometric series

. o\ - (@1)n--- (ap)n 2"
qu(al,...,ap,bl,...,bq,z) = Z{)mﬁ

where (a), =a(a+1)---(a+n—1). The following are special cases :

o o Fo(s52) =02 % =e’
e Note that

(3/2), = 3'5'-éfn+1) _ (2471(;)1!)!

Substituting the above expression, we see that

i—z%_i 4npl (1)
2" 47 Z(2n+1! 4nl

Z Jz2n _ sinz
B (2n + z
e The next part is very similar, we have
1-3---(2n—1) (2n)!
(1/2)n = =

oF1 (5

2n ~ An(n)l
which we substitute to obtain
3 _22 e 47n n 2n
F =
o z:: 2n 4"
0 1)" 2n
_y (2) s
n

e Similarly substituting the values of (1), = n! and (2),, = (n + 1)! in

zoF (1,12 — )zz.i (”!)2'(72)"
n=0 : .

n=0 (n + 1)
Q2. The dilogarithm is defined as
. — 2"
Liz(2) = Z:l 2

(i) Show that Lis(z) has radius of convergence R = 1. Show that Lis can be
expressed as a generalized hypergeometric series
LIQ(Z) =ZzZ- 3.1*—‘2(].7 ]., ]., 2, 2; Z)
1
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Proof. The radius of convergence R = lim,,_ nw = 1. Using the fact (1), = n!
and (2), = (n+ 1)! we get the required equality :
(o]

nlnln! z
-3F5(1,1,1;2,2; —2) = z - TRt
Z+3 2( 5 Ly Ly Ly 4y Z) z Z (n+1)|(n+1)| n!

n

n=0

[e'e] Zn )
=> 5 =Lis(2).
n=1

(ii) Show that Lis is injective in A(0, 2).
Proof. Let z,w € A(0, %), then

: . — 2" —w"
Liy(2) — Lig(w) = Z e
n=1

= w1 Yo )

To show Lis is injective, it is enough to show that

00
(Zn71+znf2w+”.+wnfl)
DY e #0
n=2

for any pair of numbers z, w € A(0, %) We show this by proving that the summation
in the above expression can not attain absolute value 1.
Using triangle inequality and the fact z,w € A(0, %), we obtain the inequality

n—1 n—2 n—1 2 o
2" 42" T w W T <n 3 ,

and further use this and uniform convergence to get

o] (Zn—l_"_zn—Qw_i_._._"_wn—l) i 1 (2)71—1
5 J
n=2 n n:2n 3
e} n—1
1/2
< — —
> 5(3)
n=2
=1.

Q3. Show that the function u : C\{0} — R given by
u(z) = logle]
is harmonic, but it is not the real part of a holomorphic function in C\{0}.

Proof. Let Log(z) be the standard branch of logarithm defined on C~ = C\R<y,
and let Ly : C* — C be another branch of logarithm, branched as positive real line.
Note that e£2(*) = 2 hence |el2(*)| = eRe(£2(2)) = |2|, therefore Re(Lo(2)) = log|z|.
The same hold for Log(z).

For any z # 0, either z € C~ or C*. On any of these open sets, u(z) can be
realized as the real part of a holomorphic function, Log or Ls respectively, hence u
is harmonic.
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Suppose f is holomorphic on C\{0} such that f = u + v, where u(z) = log|z|.
Therefore,

9(2) = (f — Log)(2) € {w : Re(w) = 0}

on the open set C~. Using Cauchy-Riemann condition one can show that g(z) is a
constant k. Hence on the open set C~, we have the identity

£(2) =k = Log(2).

Thus existence of f is equivalent to extending Log to C\{0}, which we know is not
possible. O

Q4. Let f : C — C be the inversion f(z) = 1.

(i)

Let C be the circle of radius r centered at the origin. Show that f(C) is a
circle of radius 1/r centered at the origin.

Proof. Let C’ be the circle of radius 1/r centered at the origin. For any
z € C, f(2) € C since |f(z)| = ﬁ = 1. Similarly, for any w € C’,
f(w) € C for any z in C or C'. Moreover we know that f(f(z)) = z,
therefore the restriction f|o : C — C’ is a bijection because f|¢/ : C' — C
is its inverse.

If we assume that Md&bius transformations map generalized circles onto

generalized circles, we do not need the above arguments. O

Let C be the circle of center 29 # 0 and radius r # zp. Show that f(O) is
the circle C’ of center wg = ‘Zo‘éioiﬂ and radius R = ﬁ

77‘2 .

(b
NI

F1GURE 1. The blue circles and the red circles are inverses with
respect to the map z — % Red circles have radius 2 and 1 and
center (4,2) and (2, 1) respectively. The biggest red circle ‘inverts’

to the smallest blue cirlce.
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Proof. An arbitrary point z € C satisfy |2 — zg| = r which implies r? =
(2 — 20)(2 — 20) = 2(2 — 20) + (|20]* — 2Z0). Using this we get

1 %o
z) —wo| = |- — —5—
|f( ) 0| > |ZO|2_,’,2
~|zol? —r? = 2%
| Azl - r?)
2] - |2 — 2ol
=———F > =R.
|2l (l20[* = 2)
The rest follows using the arguments in part (i). O

(iii) Let C be the circle of center zy # 0 and radius r = |zp|. Show that f(C) is
the line {w : Re(wzp) = 2} U {oc}.

Proof. An arbitrary point z € C\{0} satisfy |z—zg| = |20], therefore Zypzo =
(2 — 20)(z — 20) which implies |z|? = 2Zy + 20z. Observe that

B 2Zo + 2z
f(2)z0 + f(2)20 = % =1,

which implies Re(f(z)z0) = 4. Moreover z = 0 goes to oo, hence f(z) €

{w : Re(wzg) = 3} U{oc} for z € C. The rest of the argument is same. [

Q5. For a € (—1,1), let D, = {z : |2| < 1,Imz > a}. For each such a, either
find a Mobius transformation of D, onto the first quadrant @), or show that such a
transformation cannot exist.

Proof. We will show that there is a Mobius transformation mapping D, onto first
quadrant if and only if a = 0.
e Explicit map when a = 0 : Consider the Md&bius transformation which
sends the points (0,—1,1) to (1,0, 00) which can be explicitly calculated as
1+=2
fe) =1
This is in fact equal to —iC~! where C~1 : A(0,1) — b is the Cayley
transform introduced in class.
We claim that f(Dg) = @. This comes down to showing that

1+=2

Im z > 0, |z|<1<:>1 €Q.
-z
Indeed,
1+2z (1+20-2) 1—|zP+(z—2) 1—|z*+2ilmz
1—z  [1—z2 [1— 2|2 B [1— 2|2 '

The above expression is in @ iff its real and imaginary parts are positive.
This is equivalent to |z| < 1 and Im z > 0.

e No such Mobius transformation exist when a # 0 : Firstly observe
that D, is still intersection of inside of two generalized circles C; and Cs.
Although when a # 0 the two circles intersect at angle 6 different from
m/2. Let f be a Mobius transformation, hence conformal (respects angles),
it sends D, to the region which is in the intersection of insides of the circles
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FIGURE 2.

f(Cy) and f(C2) which intersect at angle 6. Since @ is intersection of inside
region of generalized circles (z = 0 and y = 0) intersection at angle 7/2
while f(Cy) and f(C3) intersect at angle 0, we conclude Q # f(D,).

O

Q6. Give an example of a biholomorphism between the strip D = {z : —7 < Imz <
7} and the slit complex plane C~ = C\R<y.

Proof. As the problem suggest, we have a natural map f : D — C~ given by
f(z) = e*. Note that f is a holomorphic map and f(D) = C~ since ¢* € R iff
Imz is an odd multiple of 7. Moreover the standard branch defined on C~ is, by
construction, is its inverse and it is holomorphic. O

Q7. The arctangent is defined by the power series

23 20

arctanz =z — — + — — -+~
rctanz = z 3 + 5
with radius of convergence R = 1. Show that
1+ 20

1—=

1
arctan z = —Log
2
for z € A(0,1).
Proof. The radius of convergence of the arctan series is
R= lim V2n+1=1,
n—oo

so the left hand side is well defined. We also need to check that the right hand side

is well-defined, that is, we need to check that
14 21 c
1—2i
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Assume for a contradiction that

14z 14w
=—u, UuERy) &= z2=1

1—zi 1—wu’

Since |z| < 1 it follows that
lT+u<l-ul &= (1+u)?<(l-u)? <= u<0

a contradiction. Next, we see that the first derivative on both sides is ﬁ :
d 2 (=1)me? 1
— arctan z = =
dz nz::o n! 1+ 22

d 1 1+ 21 1 i i 1
dz2i %1z 2i<1—zi+ 1+zi) T 1422
Thus difference of the functions must be a constant. Since the initial values at
z = 0 agree
arctan(0 =0 = i,Logl,
21

the given two functions must be the same. O



