Math 220A - Fall 2016 - Final Exam

Name:

Student ID:

Instructions:

Please print your name and student ID (if you know it).

There are 8 questions which are worth 80 points. You have 180 minutes to complete the test.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>
Problem 1. [10 points.]

Consider the function $f(z) = ze^{3-z} - 1$. Show that f has exact one zero inside the disc $\Delta(0, 1)$.
Problem 2. [10 points.]

Calculate the integral
\[\int_0^\infty \frac{dx}{x^{2n} + 1}, \text{ for } n \geq 2. \]

Make sure you explain all the necessary estimates.
Problem 3. [10 points.]

Consider

\[f(z) = z^n + a_1 z^{n-1} + \ldots + a_n. \]

Show that there exists \(c \) with \(|c| = 1 \) such that

\[|f(c)| \geq 1. \]
Problem 4. [10 points.]

Assume that f is entire and $f(z) = f(z + 1)$ such that $|f(z)| \leq e^{|z|}$. Show that f is constant.

(i) Consider

$$g(z) = \frac{f(z) - f(0)}{\sin \pi z}.$$

Show that g is periodic and that g can be extended to an entire function.

(ii) By direct calculation, show that g is bounded in the strip $0 \leq \text{Re } z \leq 1$.

(iii) Conclude from (ii) that $g = 0$ hence f is constant.
Problem 5. [10 points.]

Let \(f(z) = \frac{P(z)}{Q(z)} \) be a rational function with \(\deg P \leq \deg Q - 2 \) such that \(Q \) has no zeros along the non-negative real axis. Show that

\[
\int_0^\infty f(x) \, dx = - \sum_{a \in \mathbb{C} \setminus \mathbb{R}_{\geq 0}} \text{Res}_{z=a}(f(z) \log z),
\]

where for \(z \in \mathbb{C} \setminus \mathbb{R}_{\geq 0} \) we set \(\log z = \log r + i\theta \) and \(\theta \in (0, 2\pi) \).

You may wish to integrate along a “keyhole” contour, consisting of two portions of two circles and two line segments, and avoiding the non-negative real axis.
Problem 6. [10 points.]

Let $a, b \neq 0$ be real numbers and let U be a connected open set. Let $f : U \to \mathbb{C}$ be a holomorphic function. Show that if $a \text{Re} f + b \text{Im} f$ is constant, then f is constant.
Problem 7. [10 points.]

Assume that $f : \mathbb{C} \to \mathbb{C}$ is entire. Show that $f(\mathbb{C})$ is dense in \mathbb{C}.
Problem 8. [10 points.]

Assume that f is continuous in the closed unit disc Δ and holomorphic inside the unit disc Δ. Assume that

$$|f(z)| = 1 \text{ for all } |z| = 1.$$

(i) If f is nonconstant, show that f must have a zero inside Δ.

(ii) Show that if f has a unique simple zero at $z = 0$ then $f(z) = \alpha z$.