$$
\text { Math } 2204-\text { Zecture }
$$

Ootober 2,2020

Deiessting

Jot $u \leq e$ open \& connected.
Definition $f: U \longrightarrow \sigma$ is complex differentiable ($c D$) if $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}:=f^{\prime}(2)$ exists and is finite.

Examples
I fig complex differentiable $\Rightarrow f+g$, fo are also
(III) $1,2,2^{2}, \ldots, 2^{n}, \ldots$ complex differentiable
\bar{z} is not

$$
\begin{aligned}
& C D=\text { complex differentiable } \\
& R D=r e a l \text { differentiable }
\end{aligned}
$$

Remark
We have seen the same definition for $f: u \longrightarrow \mathbb{R}, u \leq \mathbb{R}$ open.

The two definitions have very different consequences.

II If f is $c D \Rightarrow f^{\prime}$ is $c D \Rightarrow f^{\prime \prime}$ is $c o \Rightarrow \ldots$

If f is RO this fails. Indeed.

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}} & , x \neq 0 \\ 0 & , x=0\end{cases}
$$

Then

$$
f^{\prime}(x)=\left\{\begin{array}{l}
2 x \sin \frac{1}{x^{2}}-\frac{2}{x} \cos \frac{1}{x^{2}}, x \neq 0 \\
0
\end{array}\right.
$$

is not even continuous.

III If f is $c D$, we will show

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n} \text { in some } \Delta(a, r) \subseteq u \text {. }
$$

If f is RD, this foils. Take

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

We have f is $C^{\infty}, f^{(n)}(0)=0$ an so the Taylor series at 0 is 0 . Thus f does not equal ito Taylor oerico in any interval ($-r, r$). $r>0$

IIII If f is $C D$ for $u=\sigma$ \& f bounded $\Rightarrow f$ constant. If f is $R D, f(x)=\sin x$ is bounded.
IV) If f is $c D$ and $f=0$ for $v \subseteq c$ open \Rightarrow

$$
\Rightarrow f \equiv 0 .
$$

This fails if f is RD.

A more appropriak comparison is with functions of two real variables.

$$
\begin{gathered}
\text { Identify } \mathbb{C} \cong \mathbb{R}^{2}: 2^{2}=x+i y \longleftrightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2} \text {. } \\
|z|=\sqrt{x^{2}+y^{2}}
\end{gathered}
$$

Definition $f: U \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is real differentiable (RD) if $\forall \boldsymbol{Z} \in \boldsymbol{\exists} \quad \boldsymbol{A}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad \mathbb{R}$ - linear,

$$
\lim _{h \rightarrow 0} \frac{|f(z+h)-f(z)-A h|}{|h|}=0
$$

We write $A=\operatorname{Df}(2)$.

Remark f is $c D \Rightarrow f$ is RD.

$$
\text { Indeed, } A: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \text { is multiplication by } f^{\prime}(z) \text {. }
$$

Remark if $f=u$ tiv is RD then

$$
u_{x}, u_{y}, v_{x}, v_{y} \text { exist and } A=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\text { Jacobian. }
$$

Indeed, by definition

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\left|f(x+h, y)-f(x, y)-h A\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right|}{|h|}=0 \\
\Rightarrow & A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}=u_{x}+i v_{x} \leadsto\left[\begin{array}{l}
u_{x} \\
v_{x}
\end{array}\right]
\end{aligned}
$$

Similarly $A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}u_{y} \\ v_{y}\end{array}\right]$, as needed.

Conversely If

$$
u_{x}, u_{y}, v_{x}, v_{y} \text { exist \& are continuous } \Rightarrow f \text { is } R D \text {. }
$$

See Math 140 cor Rudin 9. 21.

Lemma $A: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$. \mathbb{R}-linear. TFAE
(a) A is \mathbb{a}-linear
(b) $A(z)=\alpha \not$ for $\alpha \in \sigma$
[C) $A=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ for $\alpha=a+b 0^{\circ}$

Proof la \Rightarrow 向 Take $\alpha=A(1) \Rightarrow A(z)=z A(1)=\alpha z$.
|b \Rightarrow [c] $A\left[\begin{array}{l}1 \\ 0\end{array}\right]=A(1)=\alpha=\left[\begin{array}{l}a \\ b\end{array}\right]$

$$
A\left[\begin{array}{c}
0 \\
1
\end{array}\right]=A(i)=\alpha i=a i-b \rightarrow\left[\begin{array}{c}
-b \\
a
\end{array}\right]
$$

IC \Rightarrow Ia \mathcal{C} et $\alpha=a+b i$ Then $A(z)=\alpha z$ by the ar gument above. Thus is is $\mathbb{C}-$ linear.

Remark By the Lemma, TFAE
(1) f is $c o$

III f is RD \& $D f(z)$ is a-linear $\forall z \in U$.

Remark (Cauchy - Riemann equations).

If f is $C D, \quad D f(z)=\left[\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right]$ is $e-l$ linear
so by the Lemma

$$
\begin{aligned}
& u_{x}=v_{y} \\
& u_{y}=-v_{x}
\end{aligned}
$$

Conversely if $C R$ - equations hold \& u, v are of class C^{\prime}
then $f=u+i v$ is co.

In deed, f is RD in this case and

$$
\partial f(z)=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right] \text { is } \sigma \text {-linear by the lemma }
$$

part IG \& $C R$ equations. Thus $O f(s)$ is multiplication

$$
\text { by } \alpha=f^{\prime}(z) \text { \& } f \text { is } c \Delta \text {. }
$$

Harmonic functions

$$
\text { If } u, v \text { satisfy } C R \& \text { are of class } C^{2} \text { then }
$$

$$
\begin{aligned}
& u_{x}=v_{y} \Rightarrow u_{x x}=v_{y x} \Rightarrow u_{x x}+u_{y y}=0 . \\
& u_{y}=v_{x} \Rightarrow u_{y y}=-v_{x y}
\end{aligned}
$$

Similarly $v_{x x}+v_{y y}=0$

A function h of class c^{2} with

$$
h_{x x}+h_{y y}=0 \text { is said to bo harmonic. }
$$

Conclusion

Thus if f is $C D$ \& f class C^{2} then

$$
u=R_{e} f, v=1 m f \text { are harmonic. }
$$

Pairs (u, v) arising this way are called. harmonic conjugates.

Notation

$$
\begin{aligned}
& \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \\
& \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
\end{aligned}
$$

Remark

$$
\begin{aligned}
& z=x+i y \quad x=\frac{1}{2}(z+\bar{z}) . \\
& \bar{z}=x-i y \quad y=\frac{1}{2 i}(z-\bar{z}) .
\end{aligned}
$$

Think of $2^{2}, \overline{2}$ as independent variables. Then

$$
\begin{aligned}
\frac{\partial}{\partial z} & =\frac{\partial}{\partial x} \cdot \frac{\partial x}{\partial z}+\frac{\partial}{\partial y} \cdot \frac{\partial y}{\partial z} \\
& =\frac{\partial}{\partial x} \cdot \frac{1}{2}+\frac{\partial}{\partial y} \cdot \frac{1}{2 y} \\
& =\frac{1}{2}\left(\frac{\partial}{\partial x}-i \cdot \frac{\partial}{\partial y}\right)
\end{aligned}
$$

Lemma "f olepends on 2 but not on 2"

$$
f \text { is } c o \Rightarrow \frac{\partial f}{\partial \overline{2}}=0
$$

Proof

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}} & =\frac{1}{2}\left(f_{x}+i f_{y}\right) \text { by definition } \\
& =\frac{1}{2}\left(u_{x}+i v_{x}+i\left(u_{y}+i v_{y}\right)\right) \\
& =\frac{1}{2}\left(u_{x}-v_{y}\right)+\frac{i}{2}\left(v_{x}+u_{y}\right) \stackrel{?}{=} 0
\end{aligned}
$$

$$
\Leftrightarrow \quad u_{x}=v_{j}
$$

$$
u_{y}=-v_{x}
$$

