Theorem \(f: U \to \mathbb{C} \) holomorphic, non constant \(\Rightarrow \) \nolimits

1. \(f \) cannot have local maxima.

Proof: Assume that \(f \) achieves a local maximum at \(a \).

\[\Rightarrow \exists \ V \ni a, \ v \in U, \ \text{if} f \text{ has a maximum at } a. \]

By OMT, \(f(v) \) is open. \(\Rightarrow \exists \) disc \(\Delta \) centered at \(f(a) \)

\(\Delta \subseteq f(v) \). Note that \(f \) measures distance from the origin. The disc \(\Delta \) has points farther from \(0 \) than \(f(a) \).

contradicting the assumption \(f \) has maximum at \(a \). (in \(v \)).
Remarks

Minimum modulus principle

\[f: \mathbb{U} \rightarrow \mathbb{C} \text{ holomorphic, not constant, } f \text{ has no zeros in } \mathbb{U}. \]

\[\Rightarrow \text{ } \|f\| \text{ has no local minimum} \]

Proof. Let \(g = \frac{1}{f}: \mathbb{U} \rightarrow \mathbb{C} \text{ holomorphic}. \) Apply the maximum modulus to the function \(g \) and conclude.

\[\text{If } I \text{ bounded, } f: \mathbb{U} \rightarrow \mathbb{C} \text{ continuous, holomorphic in } \mathbb{U} \]

\[\Rightarrow \max_{\mathbb{U}} |f| = \max_{\mathbb{U}} |f| \text{ (*)}. \]

Proof. Since \(\mathbb{U} \text{ bounded } \Rightarrow \mathbb{U}, \text{ in } \mathbb{U} \text{ compact so } f \text{ achieves maxima on these sets. Let } f \text{ achieve maximum in } \mathbb{U} \text{ at } \]

\[a \in \mathbb{U}. \]

If \(a \in \mathbb{U} \Rightarrow f|_a \text{ has a maximum at } a \Rightarrow \]

\[\Rightarrow f = \text{constant} \text{ & there's nothing to prove.} \]

Otherwise \(a \in \mathbb{U} \) proving (*).
We have seen that if $f : \Delta(a, r) \rightarrow \mathbb{C}$ then

$$f(z) = \sum_{k=0}^{\infty} a_k (z - a)^k$$

We consider Laurent series

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - a)^k$$

Convergence of Laurent series

$$f^+(z) = \sum_{k=0}^{\infty} a_k (z - a)^k$$

$$f^-(z) = \sum_{k=-\infty}^{-1} a_k (z - a)^k = \sum_{k=1}^{\infty} a_k (z - a)^{-k}$$

$$f(z) = f^+(z) + f^-(z)$$

Definition

f converges absolutely and uniformly provided f^+, f^- do so.

Remark

The radius of convergence

f^+ converges if $|z - a| < R$.

f^- converges if $|z - a| < r' \iff |z - a| > r$.

Laurent Series & Functions in annular regions (Conway 5.1)
For power series, convergence is **absolute** & **uniform** on compact subsets.

\[D = \text{finite} \quad \Delta (a; r, R) = \{ z : r < |z - a| < R \} , \quad 0 \leq r < R \leq \infty. \]

Theorem Let \(f : \Delta (a; r, R) \rightarrow \mathbb{C} \) be holomorphic. Then \(f(z) = \sum_{k=-\infty}^{\infty} a_k (z - a)^k \) can be expanded into a **Laurent series**, converging absolutely & uniformly on compact sets in \(\Delta (a; r, R) \). Furthermore,

\[a_k = \frac{1}{2\pi i} \int_{|w - a| = \rho} \frac{f(w)}{(w - a)^{k+1}} \, dw , \quad r < \rho < R. \]

Remark An important case is \(r = 0 \). Then

\[\Delta^* (0, R) = \Delta (0, R) \setminus \{ 0 \} = \text{punctured disc}. \]

Let \(f : \Delta^* (0, R) \rightarrow \mathbb{C} \) be holomorphic \(\Rightarrow f(z) = \sum_{k=-\infty}^{\infty} a_k (z - 0)^k \)

Compare this to **Taylor expansion**.

Pierre Alphonse Laurent
1813 - 1854
(engineer in the army).

The original work on Laurent series was not published.

Cauchy writes:

"L'extension donnée par M. Laurent... nous paraît
digne de remarque."
Proof (of Laurent expansion) \(A = \Delta(a; r, R) \).

\[\text{wlog } a = 0; \text{ else work with } f(z + a). \]

the expression \(a_k = \frac{1}{2\pi i} \int_{\gamma_p} \frac{f(z)}{z^{k+1}} \, dz \)

is independent of \(p \). Indeed

\(\gamma_p \sim \gamma_p' \) and use

Cauchy Homotopy Theorem.

suffices to prove pointwise convergence. m2:

Indeed, convergence of \(f \) \(\Rightarrow \) convergence of \(f^+ \) & \(f^- \) in \(r < 121 < R \).

But then \(f^+ \) converges in \(121 < R \) (power series have discs of convergence) & we remarked convergence is absolute & uniform on compacts. Same for \(f^- \).
Pointwise convergence

Let \(r < s < 2 \) \(\leq S < R \)

Let \(S \) be a segment joining \(Y_s, Y_S \)

avoiding \(z \).

Let

\[\gamma = Y_S + S + Y_a + (-S) \]

Note \(\gamma \sim 0 \). This can be seen by continuously shrinking \(S \to 0 \).

Also \(n(\gamma, z) = 1 \) since \(n(Y_s, z) = 0 \) as \(z \) is outside and
\(n(Y_S, z) = 1 \) as \(z \) is interior to \(Y_S \). \(\Rightarrow n(\gamma, z) = 1 \).

CIF:

\[(+) \quad f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw. \]

\[
= \frac{1}{2\pi i} \int_{\gamma_S} \frac{f(w)}{w-z} \, dw - \frac{1}{2\pi i} \int_{Y_S} \frac{f(w)}{w-z} \, dw
\]

(cancelling the contribution of \(\delta, -\delta \)).

The two terms will give the positive/inegative parts
of Laurent series.
Key expansions (Remember them) \(\alpha < 1 \Rightarrow \alpha < s. \)

\[
\frac{1}{w - 2} = \frac{1}{w} \cdot \frac{1}{1 - \frac{2}{w}} = \sum_{k=0}^{\infty} \frac{1}{w} \left(\frac{2}{w} \right)^k
\]

\[
= \sum_{k=0}^{\infty} \frac{2^k}{w^{k+1}}. \tag{1}
\]

The convergence is uniform in \(w \) since \(\left| \frac{2}{w} \right| = \frac{12}{S} < 1 \). We can define \(M_k = \frac{12^k}{S^{k+1}}, f_k(z) = \frac{2^k}{w^{k+1}} \) and invoke Weierstrass M-test to conclude uniform convergence.

We can multiply by \(f(w) \). Uniform convergence still holds. (Use \(M_k = \frac{12^k}{S^{k+1}}, \sup_{z} |f(z)|. \))

We can then integrate term by term. (Rudin). Thus

\[
\frac{1}{2\pi i} \int_{\gamma_5} \frac{f(w)}{w - 2} \, dw = \sum_{k=0}^{\infty} \frac{1}{2\pi i} \int_{\gamma_5} \frac{f(w)}{w^{k+1}} \, dw \cdot 2^k
\]

\[
= \sum_{k=0}^{\infty} c_k 2^k. \tag{2}
\]

(ii) over \(\gamma_3 \), we use a different expansion

\[
\frac{1}{w - 2} = -\frac{1}{2} \cdot \frac{1}{1 - \frac{2}{w}} = \sum_{k=0}^{\infty} -\frac{1}{2} \left(\frac{w}{2} \right)^k
\]

\[
= \sum_{k=0}^{\infty} -\frac{w^k}{2^{k+1}}. \tag{3}
\]
Here \(\left| \frac{w}{z} \right| = \frac{3}{|z|} < 1 \). By the same arguments

\[
-\frac{1}{2\pi i} \int_{\gamma_3} \frac{f(w)}{w-z} \, dw \quad \sum_{k=0}^{\infty} \frac{1}{2\pi i} \int_{\gamma_3} f(w) w^k \, dw \cdot z^{-k-1}
\]

\[
= \sum_{k=0}^{\infty} a_{-k-1} z^{-k-1}
\]

\[
= \sum_{k=-\infty}^{\infty} a_k z^k \quad (**) \]

(\+), (*) \quad (**). imply the Theorem.