Math 220, Problem Set 1.

You may use the fact that any complex differentiable function admits as many (continuous) derivatives as you need. We will establish this later.

1. Let $U \subset \mathbb{C}$ be a connected open set. Find all complex differentiable functions $f: U \rightarrow \mathbb{C}$ such that

$$
(\operatorname{Re} f)^{2}+i(\operatorname{Im} f)^{2}
$$

is also complex differentiable.
Hint: Harmonic functions will play a role.
2. For a complex number $\alpha \in \mathbb{C}$ and positive integer $n>0$, define the Pochhammer symbol (also known as the rising factorial) as

$$
(\alpha)_{n}=\alpha(\alpha+1) \cdots(\alpha+n-1) .
$$

By definition $(\alpha)_{0}=1$.
Let $a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{q}$ be complex numbers which are not negative integers. The generalized hypergeometric series is defined as

$$
{ }_{p} F_{q}\left(a_{1}, a_{2}, \ldots, a_{p} ; b_{1}, b_{2}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!} .
$$

(i) Find the radius of convergence of the hypergeometric series.
(ii) Write the series ${ }_{2} F_{1}(1,1 ; 1 ; z)$ and ${ }_{2} F_{1}(1,2 ; 1 ; z)$ in closed form. (There is no closed form expression for arbitrary values of the parameters a_{i}, b_{j}.)
(iii) Verify that differentiation preserves hypergeometric series in the sense that

$$
\frac{d}{d z}\left({ }_{2} F_{1}(a, b ; c ; z)\right)=\frac{a b}{c} \cdot{ }_{2} F_{1}(a+1, b+1 ; c+1 ; z) .
$$

Remark: Traditionally, one considers the case $p=2$ and $q=1$, called the ordinary or Gaussian hypergeometric series, and studied by many illustrious mathematicians including Euler, Gauß, Riemann, etc. They appear in several areas of mathematics, including the study of second-order linear ordinary differential equations. In fact, it can be shown by direct differentiation that the hypergeometric series

$$
w={ }_{2} F_{1}\left(a_{1}, a_{2} ; b ; z\right)
$$

satisfies the hypergeometric differential equation

$$
z(1-z) \frac{d^{2} w}{d z^{2}}+\left(b-\left(1+a_{1}+a_{2}\right) z\right) \frac{d w}{d z}-a_{1} a_{2} w=0 .
$$

3. Let

$$
f(z)= \begin{cases}\frac{x y^{2}(x+i y)}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that the real and imaginary part of f satisfy the Cauchy Riemann equations at $z=0$, but f is not complex differentiable at $z=0$. Why doesn't this contradict the results proved in class?
4. Let $U \subset \mathbb{C}$ be a connected open set. A logarithm function $\ell: U \rightarrow \mathbb{C}$ is a continuous function such that

$$
\exp (\ell(z))=z \text { for all } z \in U
$$

We emphasize the continuity assumption in the above definition.
(i) Show that if ℓ is a complex differentiable function with $\ell^{\prime}(z)=\frac{1}{z}$, then ℓ must be a logarithm function as defined above, possibly up to a constant. You may wish to begin by differentiating $\exp (\ell(z))$.
(ii) Let $\Delta_{1}(1)$ be the open disc of radius 1 centered at 1 . Using (i), show that the power series

$$
L(z)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}(z-1)^{k}
$$

defines a logarithm function on $\Delta_{1}(1)$.
(iii) Let $a \in \mathbb{C} \backslash\{0\}$ and let b be any logarithm of a. Using (ii), derive that

$$
L\left(\frac{z}{a}\right)+b
$$

is a logarithm function over the ball $\Delta_{|a|}(a)$ of radius $|a|$ centered at a.
(iv) Show that if ℓ_{1} and ℓ_{2} are two logarithm functions defined over a connected open set U then $\ell_{1}=\ell_{2}+2 \pi$ in for some integer n.
(v) Using (iii) and (iv), conclude that any logarithm function ℓ is automatically complex differentiable. Show that $\ell^{\prime}(z)=\frac{1}{z}$.
5. Let $U \subset \mathbb{C}$ be open and connected. Assume that $f_{1}, \ldots, f_{n}: U \rightarrow \mathbb{C}$ are complex differentiable functions such that

$$
\left|f_{1}\right|^{2}+\ldots+\left|f_{n}\right|^{2}=1
$$

Show that f_{1}, \ldots, f_{n} are constant.
Hint: You may wish to compute $\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}|f|^{2}$.

