Math 220, Problem Set 3.

1. (Practice with integrals.)
(i) Consider the path $\gamma(t)=e^{i t}$ for $t \in[-\pi / 2, \pi / 2]$. Compute

$$
\int_{\gamma} z e^{i z} d z
$$

(ii) Let C be the half unit circle joining $1+i$ to $1-i$ clockwise. Calculate the integral

$$
\int_{C} \sqrt{z-1} d z
$$

where the principal branch of the square root is used for the integrand.
2. (Appreciating Cauchy's formula.) Calculate the following integrals using Cauchy's integral formula:
(i) $\int_{|z|=2} \frac{e^{z}}{(z-1)(z-3)^{2}} d z$
(ii) $\int_{|z|=2} \frac{\sin z}{z+i} d z$
(iii) $\int_{|z|=1} \frac{e^{z}}{(z-2)^{3}} d z$
(iv) $\int_{|z|=1} \frac{d z}{z^{5}+i z-4}$.
3. (Quicker proof of Goursat under stronger assumptions.) Let γ be a piecewise \mathcal{C}^{1} closed curve in a disc Δ with no self intersections, so that γ bounds a domain D with $\bar{D} \subset \Delta$. Let $f: \Delta \rightarrow \mathbb{C}$ be a holomorphic function with continuous derivative. Use Green's theorem from multivariable calculus to prove that

$$
\int_{\gamma} f d z=0 .
$$

Remark: In particular, this recovers the conclusion of Goursat's lemma and also of its Corollary, but under the assumption that f is holomorphic with continuous derivative. (We did not make this assumption in class, so the proof of Goursat we gave had to be a bit more difficult. Nonetheless, as we will see shortly, all holomorphic functions have continuous derivatives, but Goursat's lemma is used in order to arrive at this result.)

Hint: Write $f d z=(u+i v)(d x+i d y)=P d x+Q d y$, for suitable P and Q, and apply Green's theorem to the \mathcal{C}^{1}-form $P d x+Q d y$.
4. (Lipschitz estimates for bounded holomorphic functions.) Let $f: \Delta(0,2) \rightarrow \mathbb{C}$ be a holomorphic function such that $|f(z)| \leq M$ for $|z|=1$. Show that for $w_{1}, w_{2} \in \bar{\Delta}\left(0, \frac{1}{2}\right)$,

$$
\left|f\left(w_{1}\right)-f\left(w_{2}\right)\right| \leq 4 M\left|w_{1}-w_{2}\right|
$$

5. (Differentiation under integral sign. We will use this several times.) Assume $G \subset \mathbb{C}$ is an open connected set, γ is a \mathcal{C}^{1}-curve in \mathbb{C}, and $\varphi:\{\gamma\} \times G \rightarrow \mathbb{C}$ is continuous. Let

$$
g: G \rightarrow \mathbb{C}, \quad g(z)=\int_{\gamma} \varphi(w, z) d w
$$

(i) Show that g is continuous. This is first half of Exercise IV.2.2 in Conway.
(ii) If $\frac{\partial \varphi}{\partial z}$ exists at all points $(w, z) \in\{\gamma\} \times G$ and is continuous, then g is holomorphic and

$$
g^{\prime}(z)=\int_{\gamma} \frac{\partial \varphi}{\partial z}(w, z) d w
$$

This is second half of Exercise IV.2.2 in Conway.
(iii) Assume that f is a continuous function defined on $\{\gamma\}$. Show that

$$
h(z)=\int_{\gamma} \frac{f(w)}{w-z} d w
$$

is holomorphic on $\mathbb{C} \backslash\{\gamma\}$. In fact, show h admits derivatives of all orders on $\mathbb{C} \backslash\{\gamma\}$, and that

$$
h^{(k)}(z)=k!\int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} d w
$$

This is Exercise IV.2.3 in Conway.
6. (Continuation of previous question.)
(iv) Let $f: G \rightarrow \mathbb{C}$ be holomorphic. Using (iii) and the local Cauchy integral formula, show that f admits (continuous) derivatives of all orders in G.
(v) In particular, if $f: G \rightarrow \mathbb{C}$ is a continuous function that admits a holomorphic primitive, then f must be holomorphic.
(vi) (Morera's theorem.) Assume that $f: G \rightarrow \mathbb{C}$ is continuous and $\int_{\gamma} f d z=0$ for all piecewise \mathcal{C}^{1}-loops γ in G. Show that f is holomorphic in G.

7.

(i) Let $f: G \rightarrow \mathbb{C}$ be continuous, and let $R=[a, b] \times[c, d] \subset G$ be a rectangle. Let $R_{n}=\left[a+\frac{1}{n}, b-\frac{1}{n}\right] \times\left[c+\frac{1}{n}, d-\frac{1}{n}\right]$ be a rectangle contained in R for n large enough. Show that

$$
\int_{\partial R_{n}} f(z) d z \rightarrow \int_{\partial R} f(z) d z
$$

(ii) (Qualifying Exam, Fall 2023.) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be continuous, such that f is holomorphic in $\mathbb{C} \backslash \mathbb{R}$. Show that f is holomorphic in \mathbb{C}.

Hint: You may wish to show $\int_{\partial R} f d z=0$ for all rectangles $R \subset \mathbb{C}$.

