Math 220, Problem Set 3.

1. (*Practice with integrals.*)

(i) Consider the path $\gamma(t) = e^{it}$ for $t \in [-\pi/2, \pi/2]$. Compute

$$\int_{\gamma} z e^{iz} \, dz.$$

(ii) Let C be the half unit circle joining 1+i to 1-i clockwise. Calculate the integral

$$\int_C \sqrt{z-1} \, dz,$$

where the principal branch of the square root is used for the integrand.

2. (*Appreciating Cauchy's formula.*) Calculate the following integrals using Cauchy's integral formula:

(i) $\int_{|z|=2} \frac{e^z}{(z-1)(z-3)^2} dz$ (ii) $\int_{|z|=2} \frac{\sin z}{z+i} dz$ (iii) $\int_{|z|=1} \frac{e^z}{(z-2)^3} dz$ (iv) $\int_{|z|=1} \frac{dz}{z^5+iz-4}$.

3. (Quicker proof of Goursat under stronger assumptions.) Let γ be a piecewise \mathcal{C}^1 closed curve in a disc Δ with no self intersections, so that γ bounds a domain D with $\overline{D} \subset \Delta$. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function with continuous derivative. Use Green's theorem from multivariable calculus to prove that

$$\int_{\gamma} f dz = 0.$$

Remark: In particular, this recovers the conclusion of Goursat's lemma and also of its Corollary, but under the assumption that f is holomorphic with continuous derivative. (We did not make this assumption in class, so the proof of Goursat we gave had to be a bit more difficult. Nonetheless, as we will see shortly, all holomorphic functions have continuous derivatives, but Goursat's lemma is used in order to arrive at this result.)

Hint: Write fdz = (u + iv)(dx + idy) = Pdx + Qdy, for suitable P and Q, and apply Green's theorem to the C^1 -form Pdx + Qdy.

4. (Lipschitz estimates for bounded holomorphic functions.) Let $f : \Delta(0,2) \to \mathbb{C}$ be a holomorphic function such that $|f(z)| \leq M$ for |z| = 1. Show that for $w_1, w_2 \in \overline{\Delta}(0, \frac{1}{2})$,

$$|f(w_1) - f(w_2)| \le 4M|w_1 - w_2|.$$

5. (Differentiation under integral sign. We will use this several times.) Assume $G \subset \mathbb{C}$ is an open connected set, γ is a \mathcal{C}^1 -curve in \mathbb{C} , and $\varphi : \{\gamma\} \times G \to \mathbb{C}$ is continuous. Let

$$g: G \to \mathbb{C}, \quad g(z) = \int_{\gamma} \varphi(w, z) \, dw$$

- (i) Show that g is continuous. This is first half of Exercise IV.2.2 in Conway.
- (ii) If $\frac{\partial \varphi}{\partial z}$ exists at all points $(w, z) \in \{\gamma\} \times G$ and is continuous, then g is holomorphic and

$$g'(z) = \int_{\gamma} \frac{\partial \varphi}{\partial z}(w, z) \, dw.$$

This is second half of Exercise IV.2.2 in Conway.

(iii) Assume that f is a continuous function defined on $\{\gamma\}$. Show that

$$h(z) = \int_{\gamma} \frac{f(w)}{w - z} \, dw$$

is holomorphic on $\mathbb{C} \setminus \{\gamma\}$. In fact, show *h* admits derivatives of all orders on $\mathbb{C} \setminus \{\gamma\}$, and that

$$h^{(k)}(z) = k! \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} dw.$$

This is Exercise IV.2.3 in Conway.

6. (Continuation of previous question.)

- (iv) Let $f: G \to \mathbb{C}$ be holomorphic. Using (iii) and the local Cauchy integral formula, show that f admits (continuous) derivatives of all orders in G.
- (v) In particular, if $f: G \to \mathbb{C}$ is a continuous function that admits a holomorphic primitive, then f must be holomorphic.
- (vi) (Morera's theorem.) Assume that $f: G \to \mathbb{C}$ is continuous and $\int_{\gamma} f \, dz = 0$ for all piecewise \mathcal{C}^1 -loops γ in G. Show that f is holomorphic in G.

7.

(i) Let $f: G \to \mathbb{C}$ be continuous, and let $R = [a, b] \times [c, d] \subset G$ be a rectangle. Let $R_n = [a + \frac{1}{n}, b - \frac{1}{n}] \times [c + \frac{1}{n}, d - \frac{1}{n}]$ be a rectangle contained in R for n large enough. Show that

$$\int_{\partial R_n} f(z) \, dz \to \int_{\partial R} f(z) \, dz.$$

(ii) (Qualifying Exam, Fall 2023.) Let $f : \mathbb{C} \to \mathbb{C}$ be continuous, such that f is holomorphic in $\mathbb{C} \setminus \mathbb{R}$. Show that f is holomorphic in \mathbb{C} .

Hint: You may wish to show $\int_{\partial R} f \, dz = 0$ for all rectangles $R \subset \mathbb{C}$.