Math 220, Problem Set 4.

All paths/loops are piecewise of class \mathcal{C}^{1}.

1. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function in a connected open set U.
(i) Assume that $|f(z)-1|<1$ for all $z \in U$. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for all closed loops γ in U.
(ii) Assume that U is simply connected and $f(z) \neq 0$ for all $z \in U$. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for all closed loops γ in U.
(iii) Is it true in general that if $f(z) \neq 0$ for all $z \in U$ then

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for all closed loops γ in U ?
2. (Roots in simply connected regions.) Assume $f: U \rightarrow \mathbb{C}$ is a holomorphic function on a simply connected open set U such that $f(z) \neq 0$ for all $z \in U$. Let $n \geq 2$ be an integer. Show that there is a holomorphic function $g: U \rightarrow \mathbb{C}$ such that

$$
g(z)^{n}=f(z) .
$$

Hint: This has something to do with problem 1(ii).
3. (Generalized Liouville.) Assume f is an entire function and p is a polynomial such that

$$
|f(z)| \leq|p(z)|
$$

for $|z|$ sufficiently large. Using Cauchy's estimate show that f is a polynomial as well.
4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function.
(i) Show that if $\operatorname{Re} f$ is bounded (from above or below) then f is constant. You may wish to consider the function $g=e^{ \pm f}$.
(ii) Show that if $\operatorname{Re} f \leq \operatorname{Im} f$ then f is constant. You may wish to reduce this to part (i).
5. (Qualifying Exam, Spring 2017, small modification.) Find all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that for all $z \in \mathbb{C}$ we have

$$
|f(z)|^{2} \leq(\log (1+|z|))^{3}
$$

6. (Qualifying Exam, Fall 2020.) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be entire. Show that $\sum_{n=1}^{\infty} \frac{f^{(n)}(z)}{n!}$ converges uniformly on compact subsets of \mathbb{C}.
7. (Towards elliptic functions.) Show that a function $f: \mathbb{C} \rightarrow \mathbb{C}$ which is entire and doubly periodic must be constant. A function f is doubly periodic provided

$$
f(z)=f\left(z+\omega_{1}\right)=f\left(z+\omega_{2}\right)
$$

for complex numbers ω_{1}, ω_{2} such that $\omega_{1} / \omega_{2} \notin \mathbb{R}$.
Hint: You may wish to consider the values of f on the compact set $P=\left\{t \omega_{1}+s \omega_{2}, 0 \leq\right.$ $t, s \leq 1\}$. You may also wish to draw a picture.

Remark: Elliptic functions are meromorphic functions on \mathbb{C} which are doubly periodic. We will define meromorphic functions later.
8. (Bernoulli numbers.) Consider the power series expansion

$$
\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k} \cdot \frac{z^{k}}{k!}
$$

The expansion holds for $|z|<2 \pi$. The coefficients B_{k} are called the Bernoulli numbers and they often appear in many areas of mathematics.
(i) Find the first three non-zero Bernoulli numbers.
(ii) Prove that $B_{2 k+1}=0$ for all $k \geq 0$.
(iii) Show that for $p \geq 0$, we have

$$
1^{p}+2^{p}+\ldots+N^{p}=\frac{1}{p+1} \sum_{j=0}^{p}(-1)^{j} B_{j}\binom{p+1}{j} \cdot N^{p+1-j}
$$

What does this formula give for $p=1,2,3$?
Hint: For each fixed N, you may wish to examine/compute the series

$$
\sum_{p=0}^{\infty}\left(1^{p}+\ldots+N^{p}\right) \cdot \frac{z^{p}}{p!}
$$

