Math 220, Problem Set 6.

1. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, let $a \in U$, and assume that $f(a)=0$, $f^{\prime}(a) \neq 0$. Show that if r is sufficiently small then

$$
\int_{|z-a|=r} \frac{d z}{f(z)}=\frac{2 \pi i}{f^{\prime}(a)}
$$

2. Calculate the integral

$$
\int_{|z|=4} \frac{e^{z}}{(z-1)^{2}(z-3)^{2}} d z .
$$

3. (Slight generalization of the residue theorem. Conway V.2.5.) Assume f is holomorphic in U except for simple poles a_{1}, \ldots, a_{n} and g is holomorphic in U. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} f g d z=\sum_{k} n\left(\gamma, a_{k}\right) g\left(a_{k}\right) \operatorname{Res}\left(f, a_{k}\right)
$$

for all piecewise C^{1} loops γ nullhomotopic in U and avoiding a_{i}. The residue theorem is recovered setting $g=1$.
4. (Qualifying Exam, Spring 2023.) Calculate the following integral using the residue theorem:

$$
\int_{0}^{2 \pi} \cos ^{2 n} t d t
$$

You may wish to first write this integral in terms of $z=e^{i t}$.
5. (Values of the zeta function and the Bernoulli numbers.) Consider the power series expansion

$$
\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k} \cdot \frac{z^{k}}{k!} .
$$

The expansion holds for $|z|<2 \pi$, and the coefficients B_{k} are called Bernoulli numbers.
Consider the function

$$
f(z)=\frac{1}{z^{2 k}\left(e^{z}-1\right)}
$$

Let γ_{m} denote the boundary of the rectangle with corners

$$
\pm(2 m+1) \pi \pm(2 m+1) \pi i .
$$

(i) Using the residue theorem, compute the integral

$$
\int_{\gamma_{m}} f(z) d z
$$

The answer should involve the Bernoulli numbers.
(ii) Using a suitable estimate of the function f along each of the sides of γ_{m}, show that

$$
\lim _{m \rightarrow \infty} \int_{\gamma_{m}} f(z) d z=0
$$

(iii) Use (i) and (ii) to confirm the following formula for the values of the so-called Riemann zeta function in terms of the Bernoulli numbers:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=\frac{(2 \pi)^{2 k}(-1)^{k+1} B_{2 k}}{2(2 k)!}
$$

Remark: The Riemann zeta function is

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

where $s>1$ (for now s is real). We showed in (iii) that

$$
\zeta(2 k)=\frac{(2 \pi)^{2 k}(-1)^{k+1} B_{2 k}}{2(2 k)!}
$$

In particular, this generalizes the well-known identity (which is proved in Math 140B using Fourier analysis and Parseval's theorem):

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

6. (Conway V.2.8, slightly modified. Euler's expression for the cotangent. This will be needed in Math 220B.) Let $a \in \mathbb{R} \backslash \mathbb{Z}$. Let γ_{n} be the boundary of the rectangle with corners $n+\frac{1}{2}+n i,-n-\frac{1}{2}+n i,-n-\frac{1}{2}-n i, n+\frac{1}{2}-n i$.
(i) Evaluate

$$
\int_{\gamma_{n}} \frac{\pi \cot \pi z}{z^{2}-a^{2}} d z
$$

via the residue theorem.
(ii) Show that $|\cot (\pi z)| \leq 3$ on the boundary γ_{n}. You may wish to consider each side individually.
(iii) Show that

$$
\lim _{n \rightarrow \infty} \int_{\gamma_{n}} \frac{\pi \cot \pi z}{z^{2}-a^{2}} d z=0
$$

(iv) Conclude that

$$
\pi \cot \pi a=\frac{1}{a}+2 a \sum_{n=1}^{\infty} \frac{1}{a^{2}-n^{2}}
$$

This result is a theorem of Euler from 1748, see Introductio in analysin infinitorum.
(v) Setting $a=i$, show the curious identity

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}=-\frac{1}{2}+\frac{\pi}{2} \cdot \frac{e^{\pi}+e^{-\pi}}{e^{\pi}-e^{-\pi}}
$$

7. (Conway V.2.6. Further identities. This will be needed in Math 220B.) Let $a \in$ $\mathbb{R} \backslash \mathbb{Z}$. Let γ_{n} be the boundary of the rectangle with corners

$$
\pm\left(n+\frac{1}{2}\right) \pm n i
$$

(i) Evaluate

$$
\int_{\gamma_{n}} \frac{\pi \cot \pi z}{(z+a)^{2}} d z
$$

via the residue theorem.
(ii) Use (i) to show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}=\frac{\pi^{2}}{\sin ^{2}(\pi a)}
$$

(iii) What does this become for $a=1 / 2$? Of course, you can get other fun formulas for different values of a.

