Math 220, Problem Set 7.

This is a longer problem set, so please plan accordingly.

Problems 1-3 are similar to the examples in class (and to Conway V.2.7, V.2.10, V.2.12). For the three integrals below, please explain the necessary estimates.

1. (Applications to real analysis.) Using the residue theorem, compute

$$\int_0^\infty \frac{\sin^2 x}{x^2} \, dx.$$

Hint: It may be easier to consider the function $f(z) = \frac{1-e^{2iz}}{z^2}$.

2. (Applications to real analysis.) Using the residue theorem, compute

$$\int_0^\infty \frac{\log x}{(1+x^2)^2} \, dx$$

3. (Mellin transforms.) Using the residue theorem, compute

$$\int_0^\infty \frac{x^\alpha}{1+x^n} \, dx \text{ where } n > 1+\alpha > 0, n \ge 2 \text{ integer}, \ \alpha \in \mathbb{R}.$$

4. (Sum of values of rational functions at the integers.) Let $R(z) = \frac{P(z)}{Q(z)}$ be a rational function such that deg $P+2 \leq \deg Q$. Assume that Q has simple zeros at a_1, \ldots, a_q , where $a_j \in \mathbb{C} \setminus \mathbb{Z}$.

Show that

$$\sum_{m=-\infty}^{\infty} R(m) = -\pi \sum_{j=1}^{q} \frac{P(a_j)}{Q'(a_j)} \cdot \cot \pi a_j.$$

Remark: This is a generalization of Problem 6 in the previous problem set, which corresponds exactly to the case $R(z) = \frac{1}{a^2 - z^2}$, as one can easily check. The proof is also very similar. The point of the question is to show how far these techniques can be pushed.

(i) Let γ_n be the square with corners

$$\pm \left(n + \frac{1}{2}\right) \pm i \left(n + \frac{1}{2}\right).$$

Show that there exist constants $M_1, M_2 > 0$ such that if n is sufficiently large, and z is on the curve γ_n , we have

$$|\pi \cot \pi z| \le M_1$$

and

$$R(z)| \le \frac{M_2}{|z|^2}.$$

In fact, you should have established the first inequality in the previous problem set, so only the second inequality needs a brief justification. (ii) Show that

$$\lim_{n \to \infty} \int_{\gamma_n} R(z) \pi \cot \pi z \, dz = 0.$$

- (iii) Show that $\pi \cot \pi z$ has poles at all integers $m \in \mathbb{Z}$ with residue equal to 1.
- (iv) Find the poles and residues of $R(z)\pi \cot \pi z$ at all the integers $m \in \mathbb{Z}$, and also at the points a_1, \ldots, a_q .
- (v) Conclude the argument.
- (vi) As an application, write down the value of the sum

r

$$\sum_{n=-\infty}^{\infty} \frac{1}{m^2 + m + 1}.$$

You do not need to simplify the answer.

- **5.** (*Residues at infinity.*) Assume that f has finitely many isolated singularities in \mathbb{C} .
 - (i) Show that for all R > 0,

$$\int_{|z|=R} f dz = -2\pi i \sum_{j} \operatorname{Res} \left(f(z) dz, a_{j} \right)$$

where a_j 's are the singularities of f outside the circle |z| = R, including ∞ . (We assume there are no singularities when |z| = R. The circle is positively oriented.)

(ii) Find the residues of

$$f(z) dz = (z-a)^k dz$$

over $\widehat{\mathbb{C}}$, for k any integer and $a \in \mathbb{C}$.

(iii) Using (i), compute

$$\int_{|z|=5} \frac{z^3 \, dz}{(z-1)(z-2)(z-3)(z-4)}$$

The moral is that considering residues at ∞ allows for faster computations.

6. (*Meromorphic functions on the Riemann sphere.*) Show that a function f which is meromorphic over the Riemann sphere $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ must be a rational function.

By definition, a meromorphic function over $\widehat{\mathbb{C}}$ has isolated poles which could occur at certain points in \mathbb{C} and possibly also at ∞ . (Poles at ∞ were defined in a previous problem set.)

Hint: First note that f must have finitely many poles, by compactness of $\widehat{\mathbb{C}}$. Construct a polynomial g with zeroes exactly at the poles of f in $\widehat{\mathbb{C}} \setminus \{\infty\}$. Show that the product fg is a polynomial.

Remark: This exercise illustrates (early) similarities between *complex analysis* (which studies meromorphic functions, among others) and *algebraic geometry* (which studies rational functions, among others).