## Math 220, Problem Set 8.

1. (A particular case of the argument principle that can be proved directly. Logarithmic derivatives.)
(i) If $h=f g$, show that

$$
\frac{h^{\prime}}{h}=\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}
$$

whenever $f, g$ are holomorphic and non-zero.
In general, for a holomorphic function $f$, the meromorphic function $\frac{f^{\prime}}{f}$ is called the logarithmic derivative. Thus, taking logarithmic derivatives turns products into sums.
(ii) Assume that

$$
f(z)=c \prod_{\ell=1}^{k}\left(z-a_{\ell}\right)^{m_{\ell}}
$$

is a polynomial with roots at $a_{1}, \ldots, a_{k}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{k}$. Show that

$$
\frac{f^{\prime}(z)}{f(z)}=\sum_{\ell=1}^{k} \frac{m_{\ell}}{z-a_{\ell}} .
$$

(iii) Derive that for any piecewise $C^{1}$ loop $\gamma$ avoiding $a_{1}, \ldots, a_{k}$ we have

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{\ell=1}^{k} m_{\ell} \cdot n\left(\gamma, a_{\ell}\right)
$$

In particular, if $R$ is sufficiently large, and $\gamma(t)=R e^{i t}$ for $0 \leq t \leq 2 \pi$, show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\operatorname{deg} f=\text { \#zeros of } f \text { counted with multiplicity. }
$$

2. (Rouché's theorem.) Find the number of zeros of the polynomial $z^{4}+5 z+3$ inside the annulus $1<|z|<2$.
3. (Qualifying Exam, Spring 2021.) How many solutions does the equation

$$
z^{3} \sin z+5 z^{2}+2=0
$$

have inside the unit disc $|z|<1$ ?
4. (Qualifying Exam, Fall 2020.) Let $\lambda>1$ be a real number.
(i) Show that all solutions to the equation

$$
z+e^{-z}=\lambda
$$

in the right half plane $\operatorname{Re} z>0$ must be contained in the disc $|z-\lambda|<1$.
(ii) Show that $z+e^{-z}=\lambda$ has exactly one solution in the right half plane.
(iii) Deduce that the solution in (ii) must be real.
5. (Rouché's theorem.) Find the number of zeroes of $z^{4}+3 z^{2}+z+1$ inside the unit disc.

Hint: The dominant term is not a monomial.
6. (An application of complex analysis to algebra.) Using Rouché's theorem, derive Perron's criterion: a polynomial

$$
f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \in \mathbb{Z}[x]
$$

with

$$
\left|a_{1}\right|>1+\left|a_{2}\right|+\ldots+\left|a_{n}\right|, a_{n} \neq 0
$$

is necessarily irreducible over $\mathbb{Z}[x]$.
Hint: Use Rouché to determine how many roots of $f$ are inside the unit disc and how many are outside.

