Math 220A - Fall 2020 - Final

Name: _____

Student ID: _____

Instructions:

Please print your name and student ID.

You have 180 minutes to complete the test. There is a 15 minute buffer period (6:00-6:15 PST) to upload your answers in Gradescope.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		13
6		10
7		12
Total		75

Problem 1. [10 points.]

Consider the function $f(z) = z^2 e^{-z} - 4z + 1$. Find the number of zeroes of f inside the disc $\Delta(0, 1)$.

Problem 2. [10 points.]

Let $f:\Delta(0,1)\to \mathbb{C}$ be holomorphic and nonconstant, and define

$$M(r) = \max_{|z|=r} \left(\operatorname{Re} f(z) + \operatorname{Im} f(z) \right)$$

for $0 \leq r < 1$. Show that $M : [0, 1) \to \mathbb{R}$ is strictly increasing.

Problem 3. [10 points.]

Are there any holomorphic functions $f: \{z: |z| > 4\} \to \mathbb{C}$ such that $z^3 + 2$

$$f'(z) = \frac{z^3 + 2}{z(z-1)(z-3)(2z-7)}?$$

Problem 4. [10 points.]

Assume that f is an entire function such that the sequence of derivatives $f, f', f'', \dots, f^{(n)}, \dots$ converges locally uniformly to a function g with g(0) = 1.

Show that there exists N such that the derivatives $f^{(n)}(z) \neq 0$ for all $n \ge N$ and |z| < 1.

Hint: You may wish to determine g explicitly.

Problem 5. [13 points.]

Let γ_n be the boundary of the rectangle with corners

$$\pm \left(n + \frac{1}{2}\right) \pm i\left(n + \frac{1}{2}\right)$$

Evalute

$$I_n = \int_{\gamma_n} \frac{1}{z^2 \sin \pi z} \, dz,$$

using the residue theorem. Next, show that $\lim_{n\to\infty} I_n = 0$ and deduce from here the identity

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2} = -\frac{\pi^2}{12}.$$

Problem 6. [10 points.]

Let f be a meromorphic function in \mathbb{C} . Let $U = \{z \in \mathbb{C} : |z| > 1 \text{ and } z \text{ is not a pole of } f\}$. Assume that for all $z \in U$, we have

$$|f(z)| \le 1 + |z|.$$

Show that f is a rational function.

Problem 7. [12 points; 4, 4, 4.]

Let $U \subset \mathbb{C}$ be an open set containing 0. Let $f: U \to \mathbb{C}$ be an injective holomorphic function.

Show that $f'(0) \neq 0$.

(i) Show that there exists an integer m > 0, a disc around the origin $\Delta \subset U$, and a holomorphic function $g : \Delta \to \mathbb{C}$ such that

$$f(z) = f(0) + z^m g(z), \quad g(z) \neq 0 \text{ for all } z \in \Delta.$$

(ii) Show that there exists a holomorphic function $h:\Delta\to\mathbb{C}$ such that

$$f(z) = f(0) + h(z)^m$$
, $h(0) = 0$, $h'(0) \neq 0$.

(iii) Show that if f is injective then m = 1. Conclude that $f'(0) \neq 0$.