Math 220A - Fall 2020 - Final

Name: \qquad

Student ID: \qquad

Instructions:

Please print your name and student ID.
You have 180 minutes to complete the test. There is a 15 minute buffer period (6:00-6:15 PST) to upload your answers in Gradescope.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		13
6		12
7		75
Total		

Problem 1. [10 points.]
Consider the function $f(z)=z^{2} e^{-z}-4 z+1$. Find the number of zeroes of f inside the disc $\Delta(0,1)$.

Problem 2. [10 points.]
Let $f: \Delta(0,1) \rightarrow \mathbb{C}$ be holomorphic and nonconstant, and define

$$
M(r)=\max _{|z|=r}(\operatorname{Re} f(z)+\operatorname{Im} f(z))
$$

for $0 \leq r<1$. Show that $M:[0,1) \rightarrow \mathbb{R}$ is strictly increasing.

Problem 3. [10 points.]
Are there any holomorphic functions $f:\{z:|z|>4\} \rightarrow \mathbb{C}$ such that

$$
f^{\prime}(z)=\frac{z^{3}+2}{z(z-1)(z-3)(2 z-7)} ?
$$

Problem 4. [10 points.]
Assume that f is an entire function such that the sequence of derivatives $f, f^{\prime}, f^{\prime \prime}, \ldots f^{(n)}, \ldots$ converges locally uniformly to a function g with $g(0)=1$.

Show that there exists N such that the derivatives $f^{(n)}(z) \neq 0$ for all $n \geq N$ and $|z|<1$.
Hint: You may wish to determine g explicitly.

Problem 5. [13 points.]
Let γ_{n} be the boundary of the rectangle with corners

$$
\pm\left(n+\frac{1}{2}\right) \pm i\left(n+\frac{1}{2}\right)
$$

Evalute

$$
I_{n}=\int_{\gamma_{n}} \frac{1}{z^{2} \sin \pi z} d z,
$$

using the residue theorem. Next, show that $\lim _{n \rightarrow \infty} I_{n}=0$ and deduce from here the identity

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}=-\frac{\pi^{2}}{12} .
$$

Problem 6. [10 points.]
Let f be a meromorphic function in \mathbb{C}. Let $U=\{z \in \mathbb{C}:|z|>1$ and z is not a pole of $f\}$. Assume that for all $z \in U$, we have

$$
|f(z)| \leq 1+|z| .
$$

Show that f is a rational function.

Problem 7. [12 points; 4, 4, 4.]
Let $U \subset \mathbb{C}$ be an open set containing 0 . Let $f: U \rightarrow \mathbb{C}$ be an injective holomorphic function. Show that $f^{\prime}(0) \neq 0$.
(i) Show that there exists an integer $m>0$, a disc around the origin $\Delta \subset U$, and a holomorphic function $g: \Delta \rightarrow \mathbb{C}$ such that

$$
f(z)=f(0)+z^{m} g(z), \quad g(z) \neq 0 \text { for all } z \in \Delta .
$$

(ii) Show that there exists a holomorphic function $h: \Delta \rightarrow \mathbb{C}$ such that

$$
f(z)=f(0)+h(z)^{m}, \quad h(0)=0, \quad h^{\prime}(0) \neq 0 .
$$

(iii) Show that if f is injective then $m=1$. Conclude that $f^{\prime}(0) \neq 0$.

