Math 220A - Fall 2023 - Final

Name: _____

Student ID: _____

Instructions:

Please print your name and student ID.

You may use any results proved in class or from Math 140 without proof.

There are 7 questions which are worth 70 points. You have 180 minutes to complete the test.

Question	Score	Maximum
1		8
2		10
3		9
4		13
5		8
6		10
7		12
Total		70

Problem 1. [8 points.]

Consider the function $f(z) = ze^{3-2z} - 1$. Show that f has exactly one zero inside the disc $\Delta(0, 1)$.

Problem 2. [10 points.]

Let $f:\mathbb{C}\rightarrow\mathbb{C}$ be entire. Show that the series

$$g(z) = \sum_{n=0}^{\infty} \left(\frac{f^{(n)}(z)}{n!}\right)^2$$

defines an entire function, where $f^{(n)}$ denotes the n^{th} derivative of f.

Problem 3. [9 points.]

Consider

$$f(z) = z^n + a_1 z^{n-1} + \ldots + a_n.$$

Show that there exists c with $\left|c\right|=1$ such that

 $|f(c)| \ge 1.$

Problem 4. [13 points.]

Let $f(z) = \frac{P(z)}{Q(z)}$ be a rational function with deg $P \le \deg Q - 2$ such that Q has no zeros along the non-negative real axis. Show that

$$\int_0^\infty f(x) \, dx = -\sum_{a \in \mathbb{C} \setminus \mathbb{R}_{\ge 0}} \operatorname{Res}_{z=a}(f(z) \log z),$$

where for $z \in \mathbb{C} \setminus \mathbb{R}_{\geq 0}$ we set $\log z = \log r + i\theta$ and $\theta \in (0, 2\pi)$.

You may wish to integrate along the "keyhole" contour. Make sure you present the necessary estimates.

(Extra page.)

Problem 5. [8 points.]

Let $f: U \setminus \{a\} \to \mathbb{C}$ be a holomorphic function in a punctured neighborhood of a, having z = a as an essential singularity. Show that f is not injective.

Problem 6. [10 points; 5, 5.]

Let f be a continuous function in the closed unit disc $\overline{\Delta}$, holomorphic inside the unit disc Δ . Assume that

$$|f(z)| = 1$$
 for all $|z| = 1$.

(i) If f is not constant, show that f must have a zero inside Δ .

(ii) Possibly using (i) to a suitable function, show that if f has only one zero at 0, of order 1, then $f(z) = \alpha z$ for some $\alpha \in \mathbb{C}$.

Problem 7. [12 points; 1, 4, 4, 3.]

Assume that f is entire and f(z) = f(z+1) such that $|f(z)| \le e^{|z|}$. Show that f is constant.

(i) Consider

$$g(z) = \frac{f(z) - f(0)}{\sin \pi z}.$$

Check that g(z+1) = -g(z).

(ii) Show that g can be extended to an entire function.

(iii) Using suitable estimates, show that

 $\lim_{y\to\infty}g(x+iy)=\lim_{y\to-\infty}g(x+iy)=0,\quad \text{ for all } 0\leq x\leq 1.$

Also show that g is bounded in the strip $0 \leq \text{Re } z \leq 1$.

(iv) Conclude that g = 0 hence f is constant.