Math 220A - Fall 2023 - Final

Name: \qquad

Student ID: \qquad

Instructions:

Please print your name and student ID.
You may use any results proved in class or from Math 140 without proof.
There are 7 questions which are worth 70 points. You have 180 minutes to complete the test.

Question	Score	Maximum
1		8
2		10
3		9
4		13
5		10
6		12
7		70
Total		

Problem 1. [8 points.]

Consider the function $f(z)=z e^{3-2 z}-1$. Show that f has exactly one zero inside the disc $\Delta(0,1)$.

Problem 2. [10 points.]

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be entire. Show that the series

$$
g(z)=\sum_{n=0}^{\infty}\left(\frac{f^{(n)}(z)}{n!}\right)^{2}
$$

defines an entire function, where $f^{(n)}$ denotes the $n^{\text {th }}$ derivative of f.

Problem 3. [9 points.]
Consider

$$
f(z)=z^{n}+a_{1} z^{n-1}+\ldots+a_{n} .
$$

Show that there exists c with $|c|=1$ such that

$$
|f(c)| \geq 1
$$

Problem 4. [13 points.]

Let $f(z)=\frac{P(z)}{Q(z)}$ be a rational function with $\operatorname{deg} P \leq \operatorname{deg} Q-2$ such that Q has no zeros along the non-negative real axis. Show that

$$
\int_{0}^{\infty} f(x) d x=-\sum_{a \in \mathbb{C} \backslash \mathbb{R}_{\geq 0}} \operatorname{Res}_{z=a}(f(z) \log z),
$$

where for $z \in \mathbb{C} \backslash \mathbb{R}_{\geq 0}$ we set $\log z=\log r+i \theta$ and $\theta \in(0,2 \pi)$.
You may wish to integrate along the "keyhole" contour. Make sure you present the necessary estimates.
(Extra page.)

Problem 5. [8 points.]
Let $f: U \backslash\{a\} \rightarrow \mathbb{C}$ be a holomorphic function in a punctured neighborhood of a, having $z=a$ as an essential singularity. Show that f is not injective.

Problem 6. [10 points; 5, 5.]
Let f be a continuous function in the closed unit disc $\bar{\Delta}$, holomorphic inside the unit disc Δ. Assume that

$$
|f(z)|=1 \text { for all }|z|=1
$$

(i) If f is not constant, show that f must have a zero inside Δ.
(ii) Possibly using (i) to a suitable function, show that if f has only one zero at 0 , of order 1 , then $f(z)=\alpha z$ for some $\alpha \in \mathbb{C}$.

Problem 7. [12 points; 1, 4, 4, 3.]
Assume that f is entire and $f(z)=f(z+1)$ such that $|f(z)| \leq e^{|z|}$. Show that f is constant.
(i) Consider

$$
g(z)=\frac{f(z)-f(0)}{\sin \pi z} .
$$

Check that $g(z+1)=-g(z)$.
(ii) Show that g can be extended to an entire function.
(iii) Using suitable estimates, show that

$$
\lim _{y \rightarrow \infty} g(x+i y)=\lim _{y \rightarrow-\infty} g(x+i y)=0, \quad \text { for all } 0 \leq x \leq 1
$$

Also show that g is bounded in the strip $0 \leq \operatorname{Re} z \leq 1$.
(iv) Conclude that $g=0$ hence f is constant.

