$$
\frac{\text { Math 220A- 2ecturelo }}{\text { November 1, } 2023}
$$

Types of singularities

$$
\begin{aligned}
& f: \Delta^{*}(a, R) \longrightarrow \sigma, \text { holomorphic. } \\
& f(z)=\sum_{n=-\infty}^{\infty} a_{n}(2-a)^{2} \quad \text { Laurent series. }
\end{aligned}
$$

Terminology \sqrt{l} the coefficient of $(z-a)^{-1}$:

$$
a_{-1}=\operatorname{Res}_{2=a}^{2=a} f=\text { residue }=\frac{1}{2 \pi i} \int_{\gamma_{r}} f d z
$$

(16) $\sum_{n=-\infty}^{-1} a_{n}(2-a)^{n}=$ principal part.

Three cases

A] $a_{k}=0 \forall k<0 \Leftrightarrow$ Taylor expansion
$\Leftrightarrow f$ extends holomorphically across a

Removable singularity

IB $\quad a_{k}=0 \quad \forall k<-N, \quad a_{-N} \neq 0$

Pole of order N.

IC $a_{k} \neq 0, k<0$ happens infrittly often
Essential singularity

Case A a removable singularity

Theorem $A f: \Delta^{*}(a, R) \longrightarrow \Phi$ holomorphic．TEAE
II f extends holomorphically across a
（［i］f extends continuously across a
（III）f bounded near a
IN $\lim _{z \rightarrow a} f(z) \cdot(z-a)=0$ ．

Proof（G）\Rightarrow 四 \Rightarrow 化 \Rightarrow 四 obvious
［何 \Rightarrow II．W LOG $a=0$ ，Bloc work with $f(z+a)$ ．
W_{z} show $a_{k}=0 \forall k<0$ ．Fix $\varepsilon>0$ ．Since

$$
\lim _{z \rightarrow 0} z f(z)=0 \Rightarrow|f(z)|<\frac{\varepsilon}{|z|} \text { if }|z|<\delta \text {. }
$$

We have for $0<r<\delta<P$ ：

$$
\begin{aligned}
\left|a_{k}\right|=\left|\frac{1}{2 \pi j} \int_{|z|=r} \frac{f(z)}{z^{k+1}} d z\right| & \leq \frac{1}{2 \pi} \cdot \frac{\varepsilon}{r} \cdot \frac{1}{r^{k+1}} \cdot 2 \pi r \\
& =\frac{\varepsilon}{r^{k+1}}
\end{aligned}
$$

$$
\text { If } k=-1: \quad \mid a_{-1} /<\varepsilon \quad \forall \varepsilon>0 \Rightarrow a_{-1}=0 \text {. }
$$

$$
\text { If } k<-1 \text {, take } \varepsilon=1,\left|a_{k}\right|<\frac{1}{r^{k+1}} \text { Make } r \rightarrow 0
$$

to obtain $a_{k}=0$. since $k<-1$.

Example $f: U \rightarrow \mathbb{C} \rightarrow$ holomorphic,$a \in U$

$$
g(z)= \begin{cases}\frac{f(z)-f(a)}{z-a}, z \neq a \\ f^{\prime}(a), z=a & \text { is holomorphic }\end{cases}
$$

Indeed $\frac{f(z)-f(a)}{z-a}$ hae a removable -ingularity at a
by item IN. \& g is the continuous / holomorphic extension across a.

Remark In hindsight, Goursat'\& Cauchy t were equivalent to Goursat \& Cauchy.

Case 13 a pole of order N.

$$
\begin{aligned}
& f(z)=(z-a)^{-N} g(z)^{2} \text { holomorphic } \\
& g(z)=\sum_{k=0}^{\infty} a_{k-N}(z-a)^{k}, \quad g(a)=a_{-N} \neq 0 .
\end{aligned}
$$

Zeros versus poles

$$
\frac{1}{f(z)}=(z-a)^{N} \cdot \frac{1}{g(z)}, \frac{1}{g} \text { holomorphic near a }
$$

f pole of order N at $a \Longleftrightarrow \frac{1}{f}$ zero of order N at a

Lemma $f: \Delta^{*}(a, R) \rightarrow \mathbb{C}$ holomorphic TFAE
II a is a pole
(4]) $\lim _{z \rightarrow a} f(z)=\infty$.

Proof $\underline{L} \Rightarrow\left[26\right.$ Write $f(z)=(z-a)^{-N} g(z)$. Since $g(a) \neq 0 \Rightarrow|g(z)| \geq M>0$ in $|z-a|<\delta$.

$$
\Rightarrow|f(z)|-\frac{|g(z)|}{(z-a)^{N}} \geq \frac{m}{(z-a)^{N}} \text {. Make } z \rightarrow a \text { to }
$$

conclude $\lim _{z \rightarrow a} f(z)=\infty$.
[I] \Rightarrow Note $\lim _{z \rightarrow a} f(z)=\infty \Rightarrow \lim _{z \rightarrow a} \frac{1}{f(z)}=0$
$\Rightarrow \frac{1}{f}$ bounded near $a \Rightarrow \frac{1}{f}$ can be extended across a holomorppically. Not the extension vanishes at a, say of order $N \Rightarrow f$ has a pole af a of order M.

Definition $5 \subseteq U$ discrete. A function f holomorphic in $U \backslash S$, with at worst poles at S is called meromorphic.

Example
$\sqrt{\text { L }} f(z)=\frac{p(z)}{Q(z)}, u=\mathbb{c}$ meromorphic.
[䜣 $f(z)=\frac{1}{\sin \frac{1}{z}}, \quad u=c^{x}$.
chock $Z=\frac{1}{n \pi}, n \in \mathbb{Z}^{x}$ are poles. These do not
a ccumulate in $U=\widetilde{x}\{0\}$. Thus f meromorphic in

$$
u=\mathbb{C}^{x} .
$$

$$
\begin{aligned}
& \text { Case } c \quad f: \Delta^{*}(a, R) \longrightarrow \mathbb{C} \text { holomorphic } \\
& \quad a \quad \text { eooostial singularity e.g. } \quad f(z)=e^{\frac{1}{2}} .
\end{aligned}
$$

$$
\begin{gathered}
\text { Example } \quad f(z)=e^{\frac{1}{2}}=\sum_{k=0}^{\infty} \frac{1}{k!} \cdot \frac{1}{z^{k}} \cdot \Rightarrow \\
\Rightarrow a=0 \text { is essential singularity. }
\end{gathered}
$$

Remark f cannot be bounded or go to ∞. (see cases $A \& B$)

Question Flow does f behave near a ?

Theorem (Big Picard Theorm) - 220 C .
$\forall \Delta^{*}(a, \varepsilon) \subseteq \Delta^{*}(a, R), \quad f\left(\Delta^{*}(a, \varepsilon)\right)=\varnothing$ or $\subset \backslash\{$ point $\}$.

Example $f(z)=e^{\frac{1}{z}}$. $\quad a=0$.

Claim

$$
f\left(\Delta^{*}(0, \varepsilon)\right)=\sigma \backslash\{0\} . \quad \forall \varepsilon .>0
$$

Proof $y \neq 0: \quad y=e^{\frac{1}{5}}, \quad z \in \Delta^{*}(0, \varepsilon)$.

$$
\Leftrightarrow \frac{1}{z}=\log y+2 n \pi i \text { for any choice of } \log
$$

$$
\Leftrightarrow z=\frac{1}{\log g+2 n \pi i} \cdot \in \Delta^{*}(0, \varepsilon) \text { if } n \gg 0 \text {. }
$$

Weaker version:

Theorems (Casorati-Woiorstap) $f: \Delta \Delta^{*}(a, R) \longrightarrow \sigma$ TEA $\sqrt{l} f$ has essential singularity at a
[G $\forall \Delta^{*}(a, \varepsilon) \subseteq \Delta^{*}(a, R), \quad f\left(\Delta^{*}(a, \varepsilon)\right)$ is dense in \mathbb{C}.

Proof IT \Rightarrow Assume for some $\varepsilon>0$, the sot
$f\left(\Delta^{*}(a, \varepsilon)\right)$ is not dense in σ. Then $\exists \Delta(\lambda, p)$
(*). $f\left(\Delta^{*}(a, \varepsilon)\right) \cap \Delta(\lambda, p)=\phi$.

Define $g=\frac{1}{f-\lambda}$ in $\Delta^{*}(a, \varepsilon)$. By $(*)$ we know

$$
|f-\lambda| \geq \rho \text { in } \Delta^{*}(a, \Sigma) \Rightarrow|g| \leq \frac{1}{\rho} \text { in } \Delta^{*}(a, \varepsilon)
$$

Them A
$\Longrightarrow a$ is removable singularity for g. But

$$
f=\lambda+\frac{1}{g} \cdot(t)
$$

If a is not a zero for $g \Rightarrow \frac{1}{g}$ holomorphic $(t) \Rightarrow$
f extends holomorphically across= $a \Rightarrow$ removable singularity.

If a is a zero for $g \Rightarrow \frac{1}{g}$ has a pole at $a \Rightarrow$ $\Rightarrow f$ has pole at a.

Both cases are impossible.
[G] \Rightarrow Ib Assume a removable singularity \Rightarrow
TheA
$\Rightarrow f$ bounded near $a \Rightarrow \exists M>0, \sum>0$ with

$$
\mid f(z) /<M \text { in } \Delta^{*}(a, \varepsilon)
$$

$\Rightarrow f\left(\Delta^{*}(a, \varepsilon)\right)$ cannot be dense.

Lemma B
Assume a pole $\Rightarrow \lim _{z \rightarrow a} f(z)=\infty \Rightarrow$

$$
\Rightarrow \exists \varepsilon>0,|f(z)| \geq 1 \text { in } \Delta^{*}(0, \varepsilon) \Rightarrow
$$

$\Rightarrow f\left(\Delta^{*}(a, \varepsilon)\right)$ cannot be dense.

Thus a is essential singularity.

