$$
\frac{\text { Math } 220 \mathrm{~A}-\text { Lecture II }}{\text { November } 8,2023}
$$

1. Residues (Conway V. 2) a singularity for f

$$
\begin{aligned}
& f(z)=\sum_{k=-\infty}^{\infty} a_{k}(z-a)^{k} \text { Jaunt series } \\
& a_{-1}=R_{e s}(f, a)=\text { residue }
\end{aligned}
$$

Problem: Compute $R_{\text {es }}\left(f_{0} a\right)$

Method 0 Explicit Laurent expansion

$$
\begin{aligned}
& \text { Example } f(z)=\frac{z}{\sin ^{4} z} \cdot R_{z=}(f, 0)=? \\
& \begin{aligned}
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots=z\left(1-\frac{z^{2}}{6}+\frac{z^{4}}{120}-\cdots\right) \\
& \sin ^{4} z= z^{4}\left(1-\frac{z^{2}}{6}+\frac{z^{4}}{120}-\cdots\right)^{4} \\
&= z^{4}\left(1-\frac{4 z^{2}}{6}+\cdots\right) \\
& f(z)=\frac{z}{z^{4}\left(1-\frac{4 z^{2}}{6}+\cdots\right)}=\frac{1}{z^{3}} \cdot\left(1+\frac{4 z^{2}}{6}+\cdots\right) \\
&=\frac{1}{z^{3}}+\frac{4}{6} \cdot \frac{1}{z}+\cdots
\end{aligned} \\
& \Rightarrow \operatorname{Reo}(f, 0)=\frac{2}{3} .
\end{aligned}
$$

Method, $f(z)=\frac{g(z)}{h(z)} \cdot g, h$ holomorphic

Assume a simple zero for $h \Rightarrow$ a simple pole for f.

$$
\begin{aligned}
\operatorname{Res}(f, a) & =\lim _{z \rightarrow a}(2-a) f(z) \\
& =\lim _{z \rightarrow a}\left(z^{2}-a\right) \frac{g(z)}{h(z)-h(a)} \\
& =\lim _{z \rightarrow a} \frac{g(z)}{\frac{h(z)-h(a)}{z-a}}=\frac{g(a)}{h^{\prime}(a)}
\end{aligned}
$$

Conclusion: $\operatorname{Res}(f, a)=\frac{g(a)}{h^{\prime}(a)}$ if $h^{\prime}(a) \neq 0$.

Example $f(z)=\frac{z-\sin z}{z^{2} \sin z}$

$$
\begin{aligned}
& \text { poles } z=0, z=n \pi, n \neq 0, n \in \mathbb{Z} \\
& \sin z=z-\frac{z^{3}}{3!}+\frac{2^{5}}{5!}-\cdots \quad \Rightarrow \frac{\sin z}{2} \rightarrow \text { as } z \rightarrow 0
\end{aligned}
$$

- $2=0$ is removable since $\quad \Rightarrow \frac{z^{2}-\sin z}{z^{3}} \rightarrow \frac{1}{3!}$ as $z \rightarrow 0$

$$
\begin{gathered}
\lim _{z \rightarrow 0} \frac{z-\sin z}{z^{2} \sin z}=\lim _{z \rightarrow 0} \frac{z-\sin z}{z^{3}} \cdot \frac{z /}{\sin z}=\frac{1}{6} \\
\frac{1}{6} \\
1
\end{gathered}
$$

Since $z=0$ is removable $\Rightarrow \operatorname{Res}(f, 0)=0$.

$$
\left.\begin{array}{rl}
\quad z=n \pi, n \neq 0 \text {. Take } g(z)= & \frac{z-\sin z}{z^{2}} \\
h(z)=\sin z \\
\Rightarrow g(n \pi)=\frac{1}{n \pi}, h^{\prime}(n \pi)=\cos z / 2=n \pi
\end{array}\right)(-1)^{n} .
$$

$$
\text { Method } 2 \quad f(z)=\frac{g(z)}{(z-a)^{k}} \Rightarrow \operatorname{Res}(f, a)=\frac{g^{(k-1)}(a)}{(k-1)!}
$$

Write $g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}(a)}{n!}(z-a)^{n}$. coif. of $(z-a)^{-9}$ in $f \Leftrightarrow$ coif. of $(z-a)^{k-1}$ in g. This equals $\frac{g^{(k-1)}(a)}{(k-1)!}$

Example $f(z)=\frac{z}{\left(z^{2}+1\right)^{2}} \Longrightarrow$ Res $(f, i)=$?

$$
\begin{aligned}
& f(z)=\frac{g(z)}{(z-i)^{2}}, g(z)=\frac{z}{(z+i)^{2}} \cdot \Rightarrow g^{\prime}(i)=0 \text { (check) } \\
& R \in(f, i)=g^{\prime}(i)=0 .
\end{aligned}
$$

2. Residue Theorem (Conway V. 2)

Toy Example $f: \Delta^{*}(a, R) \longrightarrow ब$, holomorphic.

$$
\Rightarrow \int_{\gamma_{s}} f(z) d z=2 \pi i \operatorname{Res}(f, a) \text {. where } \gamma_{s}=\partial \Delta(a, s) \text {. }
$$

2, this also follows foo the proof of Laurent expansion (Žecture 10).
Proof Write

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}(z-a)^{k}
$$

This converges uniformly on compact soto, so we can integrate

$$
\begin{aligned}
& \Rightarrow \int_{\gamma_{s}} f d z=\sum_{k=-\infty}^{\infty} a_{k} \int_{\gamma_{s}}(z-a)^{k} d z>t=-1, \text { integral }=2 \pi ; \\
& =2 \pi i a_{-}=2 \pi i R_{E \sigma}(f, a) . \\
& k \neq-1:(z-a)^{k} \text { admits a primitive } \frac{(z-a)^{k+1}}{k+1} \Rightarrow \text { zero integral. } \\
& k=-1: \quad \int_{\gamma_{s}} \frac{d z}{z-a}=2 \pi i n\left(\gamma_{s}, a\right)=2 \pi i
\end{aligned}
$$

Residue Theorm $u \leq \mathbb{C}$ open connected, s discrete

$$
\text { . } \gamma \stackrel{u}{\sim} 0,\{\gamma\} \subseteq u \backslash s .
$$

- f holomorphic in uis, singularitios at s.

Then

$$
\frac{1}{2 \pi i} \int_{\gamma} f d z=\sum_{j \in s} R_{e s}(f, s) \cdot n(\gamma, s) .
$$

Remarks
L) Conway V.2.2. (s=frik)
$\sqrt{l} s=\phi \Rightarrow \int_{\gamma} f d z=0 \Rightarrow$ Cauchy's Theorem (Homotopy)
(LL) $s=\{a\}, \gamma=\gamma_{r}=$ small circte near $a \Rightarrow$
recorers the toy example.
[64 $s=\{a\}, f(z)=\frac{g(z)}{(z-a)^{k+1}}$, g holomopobic, $\gamma \sim 0$

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} f d z & =\frac{1}{2 \pi i} \int_{\gamma} \frac{g(z)}{(z-a)^{k+1}} d z=R_{z=}(g, a) \cdot n(\gamma, a) \\
& =\frac{g^{(k)}(a)}{z!} \cdot n(\gamma, a) \text { by inethod } 2 .
\end{aligned}
$$

This recovero cif for denvatives. \& Lecture 8

IV The sum in RHS is finite

Claim $\{s \in S, n(\gamma, s) \neq 0\}$ finite

Proof $W=\{z \in \mathbb{C} \backslash \gamma: n(\gamma, z) \neq 0\}$.

- $W=$ union of components of $\mathbb{C} \backslash \gamma=$ per
- W bounded Lecture 6
- $w \subseteq u$. Indeed. if $z \in W, Z \notin u \Rightarrow n(\gamma, z) \neq 0$. But

$$
n(\gamma, 2)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \xi}{5-2}=0 \text { by Cauchy }
$$

using $\xi \rightarrow \frac{1}{s-z}$ holomorphic in $u, \gamma \sim \sim \sim$.
$K=W u\{r\} \subseteq u$ closed a bounded
K compact in U., s discrete in U

$$
\Rightarrow K \cap V=\text { finite. }
$$

Example

$$
\begin{aligned}
& \int \frac{z+1}{z^{2}(z-1)} d z \\
& |z|=3
\end{aligned}
$$

Take $u=\Delta(0,4), s=\{0,1\},, f(z)=\frac{z+1}{z^{2}(z-1)}$.

- $\operatorname{Re}(f, 0)=\begin{aligned} & \operatorname{Res} \\ & z=0\end{aligned} \quad \frac{\frac{z+1}{z-1}}{z^{2}}=\left(\frac{z+1}{z-1}\right)^{\prime} /_{z=0}=-2$
by Method 2 of computing reidues
- $\operatorname{Res}(f, 1)=\operatorname{Res}_{z=1} \frac{z+1}{z^{2}(z-1)}=\frac{(z+1) / z=1}{\left(z^{2}(z-1)\right)^{\prime} / z=1}=\frac{2}{1}=2$
by Method 1 of computing residue

Thus $\int_{121=3} f d z=2 \pi ;\left(R_{e s}(f, 0)+\operatorname{Res}(f, 1)\right)=0$.

Naive "proof" γ simple closed curve $\alpha_{c} t s=\left\{a_{1}, \ldots, a_{k}\right\}$.

Lot $c_{i}=\partial \Delta_{i}$ be circles centered at $a_{i}, \Delta_{i} \leq u$.
$z=t \quad \bar{\Delta}_{i}^{\prime} \subseteq \Delta_{i}$. Lat $u^{\prime}=u \backslash \bigcup_{i=1}^{k} \bar{\Delta}_{1}^{\prime}=0$ pens.
Jut $\eta=\sum_{i=1}^{k} a c_{i}$. Assume we could show

$$
\gamma \underset{\sim}{u^{\prime}} \sim \text { and } n\left(\gamma, a_{i}\right)=1
$$

Then by cauchy. applied to f / u, wend have

$$
\begin{aligned}
\int_{\gamma} f d z & =\int_{\eta} f d z=\sum_{i=1}^{k} \int_{c_{i}} f d z \\
& =2 \pi i \sum_{i=1}^{k} \operatorname{Res}\left(f, a_{i}\right) \quad(\text { toy example). } \\
& =2 \pi i \sum_{i=1}^{k} \operatorname{Res}\left(f, a_{i}\right) n\left(\gamma, a_{i}\right) .
\end{aligned}
$$

Issues：回 η is not a path，but chain
｜b）$\gamma \sim^{\prime} \sim \eta$ and $n\left(\gamma, a_{i}\right)=1$ need proofs

IC how about more complioated curves？

The proof of the residue theorem requires new ideas．
3. Chains

Terminology $\quad u^{*} \subseteq \sigma, \gamma^{*}=\sum_{i=1}^{l} m_{i} \gamma_{0} \quad c^{\prime}$-chain
|a| $\int_{\gamma^{*}} f d z=\sum_{i=1}^{e} m_{i} \int_{\gamma_{i}} f d z$
b] $n\left(\gamma^{*}, a\right)=\sum_{i-1}^{e} m_{i} n\left(\gamma_{i}, a\right)$

Definition $\gamma^{*} \approx u^{*} 0$ if $n\left(\gamma^{*}, a\right)=0 * a d u^{*}$.
(we say γ^{*} is null homologous in \mathbf{u}^{*}).

Remark IG γ^{*} loop in U^{*}. Then

$$
\gamma^{*} u^{u^{*}} 0 \Rightarrow \gamma^{*} \approx u^{*} 0
$$

Indeed if a U U". than *

$$
n(\gamma ; a)=\frac{1}{2 \pi ;} \int_{\gamma^{*}} \frac{d w}{w-a}=0
$$

by homotopy form of Canary. applied to $\gamma^{*} \sim^{*} 0$ and to the holomorphic function $\frac{1}{w-a}$ in u^{*}. ($a d u^{*}$)
(4) the converse is false $U^{*}=\mathbb{C} \backslash\{a, b\}$

Check $\gamma^{*} \approx u^{*} 0$. Indeed $n\left(\gamma^{*}, a\right)=n\left(\gamma^{*}, b\right)=0$.

To ave this, find two subloope of γ^{*} going clockwise \& counterdock wise around a. Do the same for b.

However $\gamma^{*} \chi^{* *} 0$.

Remark* In algebraic topology, one learns that, st homology is the abelianization of π.. (which is defined via homotofy). Thus we expect a connection between \approx and v.

Enhanced Cauchy's Theorem (Homology Cauchy)

We seek to prove a "homology" version of Cauchy:

Theorem $f: U^{*} \rightarrow \subset$ holomorphic, $\gamma^{*} \approx{ }^{*} 0$. Then

$$
\begin{aligned}
\int_{\gamma^{*}} f d z & =0 . \\
& \sum_{\rightarrow} \text { Conway IV.5.7. }
\end{aligned}
$$

Remark By the above remarks, we see

Homology Cauchy \Rightarrow Homotopy Cauchy

Remark We well see next that
Homology Cauchy \Rightarrow Residue Tho.

