$$
\frac{\text { Math } 220 \mathrm{~A}-2 \text { Lecture } 12}{\text { November } 13,2023}
$$

Enhanced Cauchy's Theorem (Homology Cauchy) We seek to prove a "homology" version of Cauchy:

Theorem $f: u^{*} \longrightarrow \subset$ holomorphic, $\gamma^{*} \approx 0$. Then

$$
\begin{aligned}
\int_{\gamma *} f d z & =0 . \\
& H \text { Conway } I V .5 .7 .
\end{aligned}
$$

Recall $\gamma^{*} \approx u^{*} 0$ means $n(\gamma, a)=0 \forall a \notin u^{*}$.

Remark We well see next that
Homology Cauchy \Rightarrow Residue Tho.

Residue Theorem $u \subseteq \mathbb{C}$ open connected, s discrete

$$
\cdot \gamma \stackrel{u}{\sim} 0,\{\gamma\} \subseteq u \backslash s .
$$

- f holomorphic in uv, singularitios at s.

Then

$$
\frac{1}{2 \pi i} \int_{\gamma} f d z=\sum_{v \in s} R_{e s}(f, s) \cdot n(\gamma, s) .
$$

$$
\text { L> Conway V. } 2.2
$$

Proof of residue theorm W_{v} lot f holomopthic in $u \backslash s$,
$\gamma \sim \sim 0$. We want

$$
\frac{1}{2 \pi i} \int_{\gamma} f d z=\sum_{v \in s} R_{e s}(f, s) \cdot n(\gamma, s) .
$$

We saw $R H$ is frit since

$$
\{J \in s: n(\gamma, s) \neq 0\} \text { is finite. }
$$

Enumerate this set to be $\left\{a, \ldots a_{k}\right\}, m_{i}=n\left(\gamma, a_{i}\right) \neq 0$.
Let Δ_{i} be small disjoint discos near $a_{i} \Delta_{i} \subseteq u ; \Delta_{i} \cap S=\left\{a_{i}\right\}$.
$D=$ fine $\cdot u^{*}=u$ is

- $\gamma^{*}=\gamma+\sum_{i=1}^{k}\left(-m_{i}\right) c_{\text {i }}$ where $c_{i}=\partial \Delta i$

Claim $\gamma^{*} \approx 0$

$$
\begin{aligned}
& \text { Homology Cauchy for }\left(u_{i}^{*}, \gamma^{*}\right) \Rightarrow \int_{\gamma^{*}} f d z=0 \\
& \begin{aligned}
\Rightarrow \frac{1}{2 \pi i} \int_{\gamma} f d z & =\sum_{i=1}^{k} m_{i} \cdot \frac{1}{2 \pi i} \int_{c_{i}} f d z \\
& =\sum_{i=1}^{k} m_{i} \operatorname{Rrs}\left(f, a_{i}\right) \text { by toy example }
\end{aligned}
\end{aligned}
$$

last time. QED.

Proof of the claim want $n\left(\gamma^{*}, a\right)=0$ if $a \notin U^{*}$.
[] if a du. Not $\gamma \sim \sim \sim 0 \Rightarrow \gamma \approx 0 \Rightarrow n(\gamma, a)=0$.
Also a $\notin \Delta ; \Rightarrow n\left(S_{i}, a\right)=0$ then

$$
n(\gamma ; a)=\underbrace{n(\gamma, a)}_{0}+\sum\left(-m_{i}\right) \underbrace{n\left(c_{i}, a\right)}_{0}=0 .
$$

(Gi) if $a \in S$. Note that $n\left(c_{1}, a\right)= \begin{cases}0 & \text { if } a \neq a_{0} . \\ 1 & \text { if } a=a_{0} .\end{cases}$

$$
\text { If } a=a_{i} \Rightarrow n\left(\gamma^{*}, a\right)=\frac{n(\gamma, a)}{m_{i}}+\left(-m_{i}\right) \underbrace{n\left(c_{i}, a\right)}_{1}=m_{i}+\left(-m_{i}\right)=0 \text {. }
$$

If $a \neq a_{i} ; ; \Rightarrow n(\gamma, a)=0$ by definition of the $a,{ }^{\prime}$'s

$$
\Rightarrow n\left(\gamma^{*}, a\right)=n(\gamma, a)+\sum\left(-m_{j}\right) \underbrace{n(c, j)}_{0}=0 .
$$

Remarks
[G Proof of residue the only requires $\gamma \approx 0$ not $\gamma \sim 0$. \sim improvement. of hypothesis.
Li) Residue theorem \Rightarrow Homology GIF for denvatires.

Let $\gamma \approx 0$. Apply the residue theorem: $s=\{a\}$.

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(2)}{\left(z^{2}-a\right)^{k+1}} d z & =n(\gamma, a) \operatorname{Res} \frac{f(z)}{(z-a)^{k+1}} \\
& =n(\gamma, a) \cdot \frac{f^{(k)}(a)}{k!}
\end{aligned}
$$

(using Method 2 from last then)

Proof of Homology Cauchy's Theorm

- charge. notation $u \longleftrightarrow u^{*}, \gamma \longleftrightarrow \gamma^{*}$
- modify statement slightly

Theorem (Homology cir)

$$
\begin{gathered}
\gamma \approx 0, f: u \longrightarrow \in \text { holomorphic, } a \in U .1 f \gamma\} \\
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{2-a} d z=n(\gamma, a) f(a) .
\end{gathered}
$$

Remark Using the above for $f^{\text {new }}(s)=f(z) .(z-a) . f^{\text {new }}(a)=0$ we obtain $\gamma \approx 0 \Rightarrow \int_{\gamma} f d z=0$. This is Homology Cauchy.

Remark tFAE:
Homology cIt \Rightarrow Homology Cauchy 's theorem

\Rightarrow Homology CIF for derivatives page 6

Theorem (Homology CIF / Conway IV. 5)

$$
\begin{gathered}
\gamma \approx 0 . f: u \longrightarrow \text { holomorphic, } a \in u \backslash\{\gamma\} \\
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\omega)}{\nu-a} d w=n(\gamma, a) f(a) .
\end{gathered}
$$

Rewriting.

$$
\begin{aligned}
& \quad \frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-a} d w=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(a)}{w-a} d w \\
& \Leftrightarrow \int_{\gamma} \frac{f(w)-f(a)}{\underbrace{w(a, w)}_{\varphi-a}} d w=0
\end{aligned}
$$

Proof of Homology cir
Auxiliary function $\varphi: u \times u \longrightarrow \mathbb{C}$

$$
\varphi(z, w)= \begin{cases}\frac{f(z)-f(w)}{z-w}, & z \neq w \\ f^{\prime}(z) & z=w\end{cases}
$$

Want: $\int_{\gamma} \varphi(z, w) d w=0 \quad \forall z \in u(*)$
Apply (*) to $z=a \in U \backslash\{r\}$ to conduce Homology cir.

Claims $I \int$ continuous in $u \times u$
[II $z \longrightarrow \varphi(z, w)$ holomorphic $\forall w \in u$.fixed.

Proof of प" This was explained in Zeoture 10 as an application of Removable Singularity Theorem.

Proof of III φ continuous in $u \times u$. Recall

$$
\varphi(z, w)= \begin{cases}\frac{f(z)-f(w)}{z-w}, & z \neq w \\ f^{\prime}(z) & z=w\end{cases}
$$

- Continuity is clear at points where $2 \neq w$.
- We show continuity at (a, a). We have

$$
\begin{aligned}
|\varphi(z, w)-\varphi(a, a)| & =\left|\frac{1}{w-z} \int_{z}^{w} f^{\prime}(t) d t-f^{\prime}(a)\right| \\
& =\frac{1}{|w-z|}\left|\int_{z}^{w}\left(f^{\prime}(t)-f^{\prime}(a)\right) d t\right| \\
& \leq \sup _{t \in[2, w] \quad f^{\prime}(t)-f^{\prime}(a) \mid<\varepsilon} \\
& =\text { if } z, w \in \Delta(a, \delta) .
\end{aligned}
$$

This holds in $\Delta(a, \delta)$ for some δ, because f 'is continuous (in fact holomorphic).

Proof of (*) want $\int_{\gamma} \varphi(z, w) d w=0$ if $\gamma \approx 0$.
Question: How do we make use of $\gamma \approx 0$?

Answer: Define

$$
v=\{z \in \Phi, \gamma, n(\gamma, z)=0\} \text {. }
$$

- $\cup \cup V=\mathbb{C}$. Chis is the only place where $\gamma \approx \tilde{0}$ is used).

Indeed if $z \notin u \Rightarrow n(\gamma, z)=0$ since $\gamma \approx 0$. Also $z \in \mathbb{U} \backslash\{\dot{\gamma}\}$.

- V open. Indeed, by Lecture $6, V$ is union of components of $\subset \backslash\{r\}=$ open $\Rightarrow V$ open.
- V unbounded. In fact, by Lecture 6, $7 R \gg 0$ with $\{|z|>R\} \subseteq V$.

$$
\begin{aligned}
& D=\operatorname{tone} \quad h: \mathbb{C} \longrightarrow \mathbb{C} \\
& h(z)=\left\{\begin{array}{l}
\int_{r} \varphi(z, w) d w, z \in U . \\
\int_{r} \frac{f(w)}{w-z} d w, z \in V
\end{array}\right.
\end{aligned}
$$

Claims la h well -defined
(b) h bounded, $\lim _{z \rightarrow \infty} h(z)=0$
(I) h entire

Conclusion By Jiouville $\Rightarrow h$ constant $\Rightarrow h \equiv 0$.
Thus if $z \in U \Rightarrow h(z)=\int_{\gamma} \varphi(z, w) d w=0 \Rightarrow$ (*).

Proof of 回 h will-defined. Take $Z \in U \cap V$. We show

$$
\begin{aligned}
& \int_{\gamma} \varphi(\alpha, w) d w=\int_{\gamma} \frac{f(w)}{w-z} d w . \\
& \Leftrightarrow \int_{\gamma} \frac{f(z)}{w-z} d w=0 \Leftrightarrow f(z) n(\gamma, z)=0 \text { which is }
\end{aligned}
$$

Hue since $n(\gamma, z)=0$ for $z \in V$.

Proof of 6
$Z_{e} t K>0$ such that $\{\gamma\} \subseteq \Delta(0, k)$ by compactness.
We have $|w-z| \geq|z|-|w| \geq|z|-K$ if $w \in\{r\}$.

$$
\begin{aligned}
& \text { If } R \gg 0,|z| \geq R \Rightarrow Z \in V \text {. Then }
\end{aligned}
$$

Since h is continuous by $] \Rightarrow h$ bounded.
why?

- $\lim _{z \rightarrow \infty} h(z)=0 \Rightarrow \exists \alpha,|h(z)| \leq 1$ if $(z \mid \geq \alpha$

$$
h \text { continuous } \Rightarrow \forall M, \mid h(z)) \leq m \text { if }|z| \leq \alpha
$$

$$
\Rightarrow|h| \leq \max (1, \infty)
$$

Proof of 且 h entire

Recall Conway Exercise N.2.3./ LWK 3

Key statement $w: U \times\{r\} \rightarrow \mathbb{C}$

- Ψ continuous

$$
\cdot z \longrightarrow \psi(z, w) \text { holomorphic } \forall w \in\{r\} \text {. }
$$

Then $g(z)=\int_{\gamma} \psi(z, w) d w$ holomephic.

$$
\text { Proof } S_{e=} \text { Solution } S_{e} t 3 \text {. }
$$

Alternatioly, $l=t \bar{e} \subseteq U$. Then

$$
\begin{aligned}
\int_{\partial R} g d z & =\int_{\partial R} \int_{r} \psi(z, w) d w d z, \\
& =\int_{r} \int_{\partial R} \psi(z, w) d z d w \\
& =\int_{\gamma} 0 d w=\text { Fubinn's theorem }
\end{aligned}
$$

$\Rightarrow g$ admits a primitive in any disc $\Delta \leq u, g=\sigma^{\prime}$
$\Rightarrow g$ holomorphic $(\sigma=$ holomorphic $=\infty$-man times differentiable)

Back to 回. Apply Key Stakment to

- the vet U, for $\psi=\phi \Rightarrow h$ holomorphic in U
- the set v, for $\psi(z, w)=\frac{f(w)}{w-z}: v \times\{r\} \rightarrow \mathbb{C}$
$\Rightarrow h$ holomorphic in V.
Thus h is entire. QED.

2. Applications of the Residue theorem to real analysis

$$
\frac{1}{2 \pi,} \int_{\gamma} f d z=\sum_{j \in s} R_{e s}(f, s) \cdot n(\gamma, s) ., \gamma \approx 0
$$

Applications Ia trigonometric functions
b) rational functions
(c) Fourier integrals
(D) logarithmic integrals

E] Mellin transforms

Poisson: "Ie n'ai remarque' aucune intégrale gui ne fu't pas dŕjá connue"

