$$
\frac{\text { Math } 220 \mathrm{~A}-\text { Lecturel5 }}{\text { November 22, 2023 }}
$$

Residues at ∞ \& Shadows of Riemann Surfaces

IA. Topology on $\hat{C}=\mathbb{C} \cup\{\infty\}$ recall from Lecture 3

- basic neigbborbooid of ∞
$U=\{\infty\} \quad u\{|z|>R\}$ for some R.
- $\widehat{\mathbb{C}}$ is a topological space
- $\widehat{\mathbb{C}}$ compact, $\tilde{\mathbb{C}} \cong 5^{2} \subseteq \mathbb{R}^{3}$
i, homeomorphism
Remark $f: \hat{c} \longrightarrow \hat{c}, \quad z \rightarrow \frac{1}{z}, f(0)=\infty$

$$
f(\infty)=0
$$

(punctured) neighborhoods of $0 \quad|z|<r$

$$
\sum_{z-\frac{1}{z} \cdot}^{\substack{\text { I } \\ \\ \\ \\ \\ \\ z \\ z}>\frac{1}{r}}
$$

(punctured) neighborhoods of ∞
(B. Singularities \& Residues at ∞

Recall Conway V.I.13-Pset5

If $f:\{|z|>R\} \rightarrow \sigma$ holomorphic
$\Rightarrow \infty$ is isolated singularity
Types IG removable
[2] pole $\quad \Rightarrow \quad g(z)=f\left(\frac{1}{z}\right)$.
["it] essential Inspect singularity at 0 .

Example $f(z)=\frac{z^{5}+2}{z^{2}-1} . \rightarrow$ poles at $1, \infty \in \hat{C}$.

Clearly, $z=1$. is a pole. We inspect ∞.

$$
g(z)=f\left(\frac{1}{z}\right)=\frac{\frac{1}{z^{5}}+2}{\frac{1}{t}-1}=\frac{1+2 z^{5}}{1-z} \cdot \frac{1}{z^{4}} \text { pole at } z^{2}=0
$$

$\Rightarrow f$ has a pole at ∞.

Residue at $\infty \quad R_{\text {es }}(f, \infty)=$?

Beware

$$
\operatorname{Res}(f, \infty) \neq \operatorname{Res}(g, 0) .
$$

Instead define

$$
\operatorname{Res}(f, \infty):=-\frac{1}{2 \pi i} \int_{|z|=\rho} f d z \quad \text { where } \rho>R
$$

By Homotopy Cauchy this does not depend on piP

Question clever computational device why do we care about the residue at ∞ ?

Home work Example

$$
\int_{|z|=5} \frac{z^{3}}{(1-z)(2-z)(3-z)(4-z)} d z=-2 \pi i \operatorname{Re\sigma }(-\infty) .
$$

This is better than computing 4 different residues.

Question How do we calculate the residue at ∞ ?

Answer $\quad \operatorname{Res}(f, \infty)=-\operatorname{Res}_{w=0}\left(g(w) \cdot \frac{1}{w^{2}}\right)$

Proof $Z_{2} p$ be sufficiently large. Then

$$
\begin{aligned}
R e s(f, \infty) & =-\frac{1}{2 \pi i} \int_{|z|=\rho} f d z=d z=-\frac{d w}{w^{2}} . \\
& =\frac{1}{2 \pi i} \int_{|w|=1 / \rho} g \frac{-d w}{w^{2}} \text { (change variables) }
\end{aligned}
$$

(the change of orientation yiolds an $=x$ ora sign).

$$
=\operatorname{Res}_{w=0}\left(g(w) \cdot \frac{-1}{w^{2}}\right)
$$

using the usual residue theorem.

Residue Theorem for $\hat{\sigma}$

If f has isolated singularities only at $a_{1}, \ldots, a_{k} \in ब$ and possibly at ∞ then

$$
\sum_{a \in \hat{c}} \operatorname{Res}(f, a)=0
$$

$$
\begin{aligned}
& \text { Proof } Z_{B} t p \text { be large enough, } p>1 a_{j} l \text { for all } j \text {. } \\
& R_{T B}(f, \infty)=-\frac{1}{2 \pi i} \int_{|z|=p} f d z \quad \text { (definition) } \\
& =-\sum_{j} R_{e s}\left(f, a_{j}\right) \text { (usual reoiduc theorem) } \\
& \Longrightarrow \quad \sum_{a \in \hat{c}} \operatorname{Res}(f, a)=0 .
\end{aligned}
$$

Remark * This generalizes correctly to other compact Riemann surfaces.

Example $f(z)=\frac{z^{5}+2}{z^{-1}}$.
we saw that f has pole at $z=1$ and $z=\infty$.

$$
\begin{aligned}
& \operatorname{Res}(f, 1)=\left.\frac{z^{5}+2}{(z-1)^{\prime}}\right|_{z=1}=3 \text {. } \\
& \operatorname{Res}(f, \infty)=\operatorname{Res}_{w=0}\left(g(w) \cdot \frac{-1}{w^{2}}\right) \\
& z=1 / w \Rightarrow g(w)=f\left(\frac{1}{w}\right)=\frac{1 / w^{r}+2}{1 / w-1}=\frac{1+2 w^{5}}{1-w} \cdot \frac{1}{w^{4}} . \\
& \text { Thus } \quad \operatorname{Res}(f, \infty)=\operatorname{Res}_{w=0} \frac{1+2 w^{\sigma}}{1-w} \cdot \frac{1}{w^{4}} \cdot \frac{-1}{w^{2}} \\
& =\operatorname{Cooff}_{\omega^{5}}-\frac{1+2 w^{5}}{1-w} \\
& =\operatorname{corff}_{w^{5}}-\left(1+2 w^{5}\right)\left(1+w+w^{2}+w^{3}+w^{4}+w^{5}\right) \\
& =-(1+2)=-3
\end{aligned}
$$

This is conoiotenf with the residue theorem on \hat{C}.

Example (Lagrange)
Let $f(z)=\frac{P(z)}{Q(z)}$. Asoume that

- $\operatorname{deg} P=p, \operatorname{deg} Q=q, p \leq q-2$
- Q has simple roots $\alpha_{1}, \ldots, \alpha_{2}$
f has poles at $\alpha_{1} \ldots \alpha_{2}$ and possibly at ∞.

$$
\begin{aligned}
& \text { - } R_{z s}\left(f, \alpha_{j}\right)=\frac{P\left(\alpha_{i}\right)}{Q_{0}^{\prime}\left(\alpha_{j}\right)} \\
& \text { - } R_{i s}(f, \infty)=0 \quad(\text { next page). }
\end{aligned}
$$

Residue Theorem for $\hat{\mathbb{Q}} \Longrightarrow \sum_{i=1}^{2} \frac{P\left(\alpha_{j}\right)}{Q^{\prime}\left(\alpha_{j}\right)}=0$

When $p(z)=z^{0}, Q(z)=\prod_{i=1}^{11}\left(z-\alpha_{i}\right)$, this gives

$$
\sum_{i=1}^{2} \frac{\alpha_{i}^{p}}{\prod_{\substack{j \neq i}}\left(\alpha_{j}-\alpha_{i}\right)}=0 \quad \forall p \leq 2-2 .
$$

Proof $\operatorname{Res}\left(\frac{P}{Q}, \infty\right)=0$ if $p \leq 2-2$.

$$
\begin{aligned}
\text { Write } p & =a_{0} z^{p}+\cdots+a_{p}, a_{0} \neq 0 \\
Q & =b_{0} z^{2}+\cdots+b_{q}, b_{0} \neq 0
\end{aligned}
$$

$$
R_{=s}\left(\frac{p}{Q}, \infty\right)=\operatorname{Res}_{w=0}\left(\begin{array}{l}
a_{0} \frac{1}{w^{p}}+a_{1} \frac{1}{w^{p},}+\ldots+a_{p} \\
b_{0} \frac{1}{w^{2}}+b_{1} \frac{1}{w^{2-1}}+\ldots+b_{2}
\end{array} \frac{-1}{w^{2}}\right)
$$

$$
=\operatorname{Rer}_{w=0}\left(\frac{w^{2}}{w^{p}} \cdot \frac{a_{0}+a, w+\cdots+a_{p} w^{p}}{b_{0}+b, w+\ldots+b_{2} w^{2}} \cdot \frac{-1}{w^{2}}\right)
$$

$$
=-R_{=s}\left(w^{2-p-2}\left(\frac{a_{0}+a, w+\cdots+a_{p} w^{p}}{b_{0}+b, w+\ldots+b_{2} w^{2}}\right)\right.
$$

$=0$.
holomorphic near o since

$$
p+2 \leq q
$$

Example

$$
I=\int_{\mid z /=10} \frac{z^{\prime} d z}{(z-9)(z-2) \ldots(z-9)}=?
$$

Residue theorem:

$$
I=2 \pi i \sum_{t=1}^{g} \operatorname{Res}(f, t)^{\ell}=-2 \pi i \quad R_{e s}(f, \infty)=2 \pi i .
$$

Indeed,

$$
\begin{aligned}
& \operatorname{RES}(f, \infty)=\operatorname{Re\sigma }\left(f\left(\frac{1}{2}\right) \cdot \frac{-1}{2^{2}}, 0\right)= \\
& =\operatorname{Res}\left(\frac{1 / z^{8}}{\left(\frac{1}{z}-1\right) \cdots\left(\frac{1}{z}-9\right)} \cdot \frac{-1}{z^{2}}, 0\right) \\
& =\operatorname{Res}\left(\frac{-1 / z}{(1-z) \ldots(1-9 z)}, 0\right) \\
& =-\frac{1}{(1-z) \cdots(1-92)} /_{z=0}=-1 . \\
& \Rightarrow \quad I=2 \pi i^{\circ}
\end{aligned}
$$

Remark* (w ell not use)
Better to speak about residue of forms

$$
f d z \quad \stackrel{\text { versus }}{\longleftrightarrow} f
$$

Remark A change of coordinates near 0 is a biholomorphism

$$
h: u \rightarrow V, \quad \curvearrowleft(0)=0, \quad h^{\prime}(0) \neq 0
$$

where u, v are open neighborhoods of 0

Residues of functions are dependent of choice of coordinates ie.

$$
\operatorname{Res}(f, 0) \neq \operatorname{Res}(f \cdot z, 0) .
$$

Example $f(z)=\frac{1}{z}, h(z)=\lambda z, \lambda \neq 0$.
$\operatorname{Rrs}(f, 0)=1$

$$
\operatorname{Ros}(f \circ h, 0)=\frac{1}{\lambda}
$$

Residues of forms are coudinate-independent!

$$
\begin{aligned}
\operatorname{Ros}(f(z) d z) & =\operatorname{Res}_{z=0}(f(h(w)) d h(w))^{\prime}=0 \\
& \left\{\begin{array}{l}
z=h(w) \\
\\
\end{array} \quad \underset{\substack{ \\
z=0}}{ }\left(f(h(w)) \cdot h^{\prime}(w) d w\right) .\right.
\end{aligned}
$$

In deed $\int_{\gamma} f(z) d z=\int_{-1} f(\hbar(x)) \cdot \xi^{\prime}(w) d w$
Change of variables formula

This independence applies to the residue at ∞ as well:

$$
\begin{array}{rll}
\operatorname{Res}(f d z) & =\operatorname{Res}^{\operatorname{Ros}\left(g(w) \cdot d\left(\frac{1}{w}\right)\right)} & z \stackrel{\leq}{=} 1 / w \\
& \cdot w=0 \\
& =\operatorname{Res}_{\substack{ }}\left(g(w) \cdot \frac{-d w}{w^{2}}\right) . & g(w)=f\left(\frac{1}{w}\right)
\end{array}
$$

This justified the choice of sign in the definition of the residue at ∞.

