$$
\frac{\text { Math } 220 \mathrm{~A}-\text { Lecture 16 }}{\text { November } 27,2023}
$$

1. The Argument Principle is a useful application of the Residue Theorem.

Order $f: u-\Phi$ maromopbic, $u \subseteq \Phi, a \in U$.

$$
\text { ord }(f, a)=\left\{\begin{array}{cl}
n, & \text { a zero of order } n \\
-n, & \text { a pole of order } n \\
0, & \text { otherwise }
\end{array}\right.
$$

Remark o $\underline{\pi}$ ord $(f, a)=n \Leftrightarrow f=(z-a)^{n} g$
where g holomorphic near $a, g(a) \neq 0$
This follows by inspecting the Taylor / Laurent expansion.
(11) ord $(f g, a)=\operatorname{ord}(f, a)$ ord (g, a)

Indeed, let $\operatorname{ard}(f, a)=m$, ord $(g, a)=n$.

$$
\begin{aligned}
& \text { Write } f=(z-a)^{m} F, g=(z-a)^{n} G, F(a), G(a) \neq 0 \\
& \Rightarrow f g=(z-a)^{m+n} F \text { with } F G(a) \neq 0 . \\
& \stackrel{a}{\square} \operatorname{ord}(f g, a)=m+n=\operatorname{ord}(f, a)+\operatorname{ord}(g, a) .
\end{aligned}
$$

Question Find poles \& residues of $\frac{f^{\prime}}{f}$

Answer Poles of $\frac{f^{\prime}}{f}$ come foo zeros or poles of f.
Z et a be a zero/pole with ord $(f, a)=k$.

$$
\begin{aligned}
& \Rightarrow f=(z-a)^{k} g \cdot g \text { holomorphic, } g(a) \neq 0 . \\
& \Rightarrow \frac{f^{\prime}}{f}=\frac{k(z-a)^{k-\prime}}{(z-a)^{k} g} g+(z-a)^{k} g^{\prime} \\
& =\frac{k}{z-a}+\frac{g^{\prime}}{g}
\end{aligned}
$$

Since $g \neq 0$ near $a \Rightarrow \frac{g^{\prime}}{g}$ holomorphic near a
$\Rightarrow \frac{f^{\prime}}{f}$ has simple pole and

$$
\operatorname{Res}\left(\frac{f^{\prime}}{f}, a\right)=\operatorname{ord}(f, a) \quad(=k) .
$$

Argument Principle / Conway V. 3.4 .
Theorem Given f meromorphic in $U, \gamma \sim 0$, avoiding the z eros and poles of f we have

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f} d z=\sum_{a} n(\gamma, a) \text { ord }(f, a)
$$

This follows by the Residue Theorem \& above discussion.

Remartes \sqrt{l} In practice, γ is a circle or a simple closed curve with Int $\gamma \subseteq U$. Then

$$
n(\gamma, a)= \begin{cases}1, & a \in \operatorname{lnf} \gamma \\ 0, & a \in E x+\gamma\end{cases}
$$

Thus

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f} d z=\# \text { Zeroes }-\# \text { Polesin } \ln t \gamma
$$

(counted with multiplicity)
(ai] We have $\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \int_{f \cdot \gamma} \frac{d \omega}{\omega}$ for $w=f(z)$

$$
=n(f \cdot \gamma, 0)=\text { winding number. }
$$

[iii Why is it called "argument principe"?

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f} d z & =\frac{1}{2 \pi i} \int_{\gamma} d \log f \\
& =\frac{1}{2 \pi i} \Delta \log f \\
& =\frac{1}{2 \pi i} \Delta(\log |f|+\dot{y} \operatorname{Arg} f) \\
& =\frac{1}{2 \pi} \Delta \operatorname{Arg} f
\end{aligned}
$$

Conway v.3.6.
[v) Enhanced version $g: U \rightarrow \sigma$ holomorphic
f meromorphic in $U, \gamma \sim 0$ avoiding the z eros
and poles of f,

$$
\frac{1}{2 \pi i} \int_{\gamma} g \frac{f^{\prime}}{f} d z=\sum_{a} g(a) . n(\gamma, a) \text {. ord }(f, a)
$$

follows from En hance Residue Thy (PSt $6 \nRightarrow 3$)

If γ is simple closed, Int $\gamma \subseteq u$, then

$$
\frac{1}{2 \pi i} \int_{\gamma} g \frac{f^{\prime}}{f} d z=\sum g(20000 f)-g(\beta \text { oles off) }
$$

appear with multiplicity

Proof We apply the Residue theorem.

$$
W_{=} \text {show } \operatorname{Res}\left(g \cdot \frac{f^{\prime}}{f}, a\right)=g(a) \text { ord }(f, a)
$$

\mathcal{L}_{e} ord $(f, a)=k$. We know from page 2:

$$
\frac{f^{\prime}}{f}=\frac{k}{2-a}+F, F, 6 \text { holomorphic near a }
$$

$$
g=g(a)+(2-a) G \text { (Taylor Expansion) }
$$

$$
\begin{aligned}
\Longrightarrow g \cdot \frac{f^{\prime}}{f} & =\left(\frac{k}{z-a}+F\right)(g(a)+(2-a) G) \\
& =\frac{k g(a)}{z-a}+H \text { where H holomorphic nora }
\end{aligned}
$$

$$
\Rightarrow \operatorname{Res}\left(g \cdot \frac{f^{\prime}}{f}, a\right)=k g(a)=\operatorname{ord}(f, a) \cdot g(a) .
$$

2. Applications of the Argument Pineapple

- elliptic functions
- biholomorphisms
- Rouahe's theorem $\}$ next time

Elliptic functions or see HNK 4

- studied by Abel. Jacobi; Weierstrap
- connected with arclength of ellipse
= Miptic integrals
elliptic curves
- rich theory but we only say a few words hare
(more in Math 220 B)

Carl Gustav Jacob Jacobi (1804-1851)

Jacobian. Jacobi symbol, Jacobi identify, symbol a

Qeiersting

$$
\text { Karl Weiezsho } \beta \text { (1815-1897) }
$$

Definition
$\mathcal{L e f}_{2} \omega_{1}, \omega_{2} \in \mathbb{C}\{0\}, \frac{\omega_{1}}{\omega_{2}} \notin \mathbb{R}$. Define the lattice

$$
\wedge=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}=\left\{m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}
$$

Def A_{n} elliptic function f satiofico

II f meromorphic on \mathbb{C}
(G] f periodic. $f(z)=f\left(z+w_{1}\right)=f\left(z+w_{z}\right)$

$$
\text { Not that in fact } \forall \lambda \in \Lambda, f(z)=f(z+\lambda) \quad \text { (*) }
$$

Remark The best. known elliptic function is

$$
f s(z)=\frac{1}{z^{2}}+\sum_{\substack{\lambda \in \Lambda \\ \lambda \neq 0}}\left(\frac{1}{(z+\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)
$$

$W_{\text {r }}$ will study this functor in detail later. in $220 B$

Remark $f=$ elliptic $\Rightarrow f^{\prime}=$ lliptic.
\ln Nerd $f(z)=f(z+\lambda) \Rightarrow f^{\prime}(z)=f^{\prime}(z+\lambda)$ for $\lambda \in \Lambda$.

Basic Properties of Elliptic Functions

Not that Λ is a subgroup of \mathbb{C}.

$$
\begin{aligned}
& \text { Define } \\
& \qquad \begin{aligned}
z & \equiv w \bmod \Lambda \quad \Longrightarrow-w \in \Omega . \\
z & \Longrightarrow w \bmod \Lambda \quad(w)
\end{aligned} \quad \Rightarrow f(z)=f(w) .
\end{aligned}
$$

Remark f is determined by values mod Λ
We will reatiot f to a parallologram.

$$
p_{a}=\left\{a+t_{1} \omega_{1}+t_{2} \omega_{2}: 0 \leq t_{1} \leq 1,0 \leq t_{2} \leq 1\right\}
$$

Each point in σ is congruent to a point in P_{a}.
(sen next picture)

Claim \mathcal{F} a such that ∂P_{a} contains no zeroes /poles. of f.

Proof Start with any a. Since P_{a} is compact \&
zeroes /poles are discrete $\Rightarrow 7$ finitely many of them in Pa. A suitable translation would ensure ∂P_{a} avoids them.

Write $P=P_{a}$ where P is chosen as above.

Remark (HWK 4, \# 7)
If f holomorphic in $\Phi \Rightarrow f / I$ continuous
P compact
$\Rightarrow f / 2$ bounded
periodic
$\Rightarrow f$ bounded
ziouville
$\Rightarrow f$ constant

Thus in general f will have poles.

Notation Z eros in $P: \alpha_{1} \ldots \alpha_{k} \quad$ (w /multiplicity)
poles in $P: \beta_{2} \ldots \beta_{l}$ (wi multiplicity)

Theorem $\underline{l l} k=l$: $\#$ heroes $(f)=\#$ Poles (f) in p
(G) $\sum_{i=1}^{k} \alpha_{i} \equiv \sum_{i=1}^{k} \beta_{i} \bmod \Lambda$.

Remark Given $\alpha_{1} \ldots \alpha_{k}, \beta_{1} \ldots \beta_{k}$ with

$$
\sum_{i} \alpha_{i} \equiv \sum_{i} \beta_{i} \quad \bmod \Lambda
$$

there is an elliptic function with these zeroes/poles.
This is not obvious. \leadsto Abol-Jacobi theory

Proof IC By the Argument Principle

$$
\frac{1}{2 \pi i} \int_{\partial P} \frac{f^{\prime}}{f} d z=\# \text { Zeroes }(f)-\# \text { Poles }(f) \text { in P. }
$$

We ohow $\int_{\partial r} \frac{f^{\prime}}{f} d z=0 . \quad Z_{2} f \quad \partial P=L_{1}+L_{2}+\left(-L_{3}\right)+\left(-L_{4}\right)$
We show $\int_{L_{1}} \frac{f^{\prime}}{f} d z=\int_{L_{3}} \frac{f^{\prime}}{f} d z \quad \& \int_{L_{2}} \frac{f^{\prime}}{f} d z=\int_{L_{4}} \frac{f^{\prime}}{f} d z$.

Both clams follow by periodicity.

$$
\begin{aligned}
& \int_{L_{1}} \frac{f^{\prime}}{f} d z=\int_{L_{1}} \frac{f^{\prime}}{f}\left(z+\omega_{2}\right) d z=\int_{L_{3}} \frac{f^{\prime}}{f} d z \\
& \left(L_{3}=L_{1}+\omega_{2}\right)
\end{aligned}
$$

([i] We use the Enhanced Argument Principle $(g(y)=z)$.

$$
\frac{1}{2 \pi i} \int_{\partial P} z \frac{f^{\prime}}{f} d z=\sum_{i=1}^{k} \alpha_{i} \cdot-\sum_{i=1}^{k} \beta_{i}
$$

We show $\frac{1}{2 \pi i}\left(\int_{L_{1}} z \frac{f^{\prime}}{f} d z-\int_{L_{3}} z \frac{f^{\prime}}{f} d z\right) \in \Lambda$ and

$$
\frac{1}{2 \pi i}\left(\int_{L_{2}} z \frac{f^{\prime}}{f} d z-\int_{L_{4}} z \frac{f^{\prime}}{f} d z\right) \in \Lambda
$$

This wall complete the proof.
W only consider, it expression. $L_{3}=L_{1}+\omega_{2}$

$$
\begin{aligned}
& 1 \text { (} 1 \text {, } \text { Lb periodic }^{\prime} \\
& \frac{1}{2 \pi i}\left(\int_{L_{1}} z \frac{f^{\prime}}{f} d z-\int_{L_{3}} z \frac{f^{\prime}}{f} d_{z}\right)=\frac{1}{2 \pi i}\left(\int_{L_{1},} f \frac{f^{\prime}}{f} d z-\int_{L_{1}}\left(z^{f}+\omega_{2}\right) \frac{f^{\prime}}{f} d z\right) \\
& =-\frac{1}{2 \pi i} \cdot \omega_{2} \cdot \int_{L,} \frac{f^{\prime}}{f} d z \quad \downarrow w=f(z) \text {. } \\
& =-\left(\frac{1}{2 \pi}, \int_{f(L,)} \frac{d w}{w}\right) \cdot \omega_{2} \\
& =-\underbrace{n(f(L,), 0)}_{\text {integer }} \omega_{2} \in \Lambda .
\end{aligned}
$$

Note that $f(L$,$) is a loop (by periodicity). mot containing 0$.

