Math 220 A - Lecture 19

December6, 2023

1. Hur witz Theorem

Z = $f_n: \mathcal{U} \to \mathcal{C}$ holomorphic, $f_n \stackrel{l.u.}{\to} f$, $\nabla \subseteq \mathcal{U}$ compact If f/ has no zeros . IN such that $\frac{\# \ Zeros \ (f) = \# \ Zeros \ (f_n) \ for \ n \ge N.}{\overline{V}}$ $\frac{\overline{V}}{\sqrt{V}}$ $\frac{\overline{V}}{\sqrt{V}}$ $\frac{\overline{V}}{\sqrt{V}}$ $\frac{\overline{V}}{\sqrt{V}}$ $\frac{\overline{V}}{\sqrt{V}}$ $\frac{\overline{V}}{\sqrt{V}}$ $\frac{\overline{V}}{\sqrt{V}}$ 117 Most use ful case (Conway VII. 2. 5) V = 🛆 (a, R) Since f/av has no Zeroes => & =min 171>0. av. Since $f_n \rightleftharpoons f$ over $\partial V \Longrightarrow JN$ s.t. over $\partial V \nleftrightarrow n \ge N$. $\sup_{\partial V} |f_n - f| < \varepsilon \leq \min_{\partial V} |f| => |f_n - f| < |f| \text{ over } \partial V.$

=> Rouche': # 20000 (f) = # 20000 (fn) in V.

[11] General case W V compact => f has finitely 52 many 200005 C,... C, in V. = ₂ Surround C; by small disjoint discs Δ_j , $W = V \setminus (\Delta_j)$ => f has no geros in W => JN such that tn 2N, fn has no zeros in \overline{W} . (Indeed, let $\varepsilon = \min |f| > 0$. Then \overline{W} JN such that Ifn-flxE on W for n 2N. This Implies for 70 on W for n2N.). Then, $# 2erocs (f) = \sum # Zerocs (f) = for n large by$ $\overline{v} \qquad j = \overline{\delta_j}$ 1 st case applied to fr on Dy. $= \frac{\pi}{j} = \frac{\pi}{j} = \frac{\pi}{2}$ = # Zeroes (fn) for nZN. V

open connected 2 Corollary A fr = f & fn holomorphic in U,

If fn is zero free +n => f zero - free or f=0.

> Conway VII. 2.6.

Proof Indeed if f to, lot a be chosen so that

f(a) = 0. Let $V = \overline{\Delta}(a, r)$, $f_{\partial V}$ has no zeroes.

(Argue by contradiction using zeros cannot accumulate.)

Hurwitz # $\frac{1}{\sqrt{1-1}} = \frac{1}{\sqrt{1-1}} = \frac{$ => O. a soumption.

=> f is zero-free

Example $u = \sigma^* = \sigma \cdot \{o\}$

• $f_n(2) = 2$, f(2) = 2, $f_n = f_n$, f_{2em} , f_{ne} .

• $f_n(z) = \frac{z}{n}$, f(z) = 0, $f_n = f_n$, f = 0.

Thus both situations can occur.

Remark

The corresponding stakment fails in real analysis.

 $T_{ak=f_n}: R \longrightarrow R, \quad f_n(x) = x^2 + \frac{1}{n}$

Note fri = f, fri $f: R \longrightarrow R, \quad f(x) = x^2.$

has no zeros, but f does.

Corollary B fn = f, fn holomorphic in 21,

If fn are injective 4n => f injective or f constant.

Proof Assume f not snjechve, f(a) = f(b), $a \neq b$.

 $\frac{1}{f_n} = f_n - f_n(a).$ $\frac{1}{f_n} = f_n - f(a).$ $\frac{1}{f_n} = f_n - f(a).$ $\frac{1}{f_n} = \frac{1}{f_n} + \frac$

fn injective =, fn zero for on u = u \ fa }.

Corollary A => f is zero free on 2i or $f \equiv 0$ on 2i

Note that f(b) = f(b) - f(a) = 0 => f is mot good free

in $\tilde{\mathcal{U}}$. Thus $\tilde{f} \equiv 0$ in $\tilde{\mathcal{U}} = 0$ f constant.

Adolf Hurwitz (1859-1913)

2. Summary of topics for Math 220A

- (1) Holomorphic functions. Harmonic functions. The Cauchy-Riemann equations.
- (2) Conformal maps. Fractional linear transformations. Cayley transform.
- (3) Existence of primitives. Logarithm. Winding numbers.
- (4) Cauchy's theorem and Cauchy's integral formula, different versions. Cauchy's estimates.
- (5) Taylor and Laurent series.
- (6) Zeroes of holomorphic functions, identity principle, open mapping theorem, maximum modulus principle, Liouville's theorem.
- (7) Types of singularities. Removable singularities theorem. Poles. Essential singularities. Meromorphic functions. Residues. Cassorati-Weierstraß.
- (8) The residue theorem. Residues at infinity. Applications to real analysis.
- (9) The argument principle. Rouché's theorem.
- (10) Sequences and series of holomorphic functions. Weierstraß convergence theorem. Hurwitz's theorem.

Final Exam Tuesday, Dec 12, 11:30 - 2:30

Office Hours - Monday, Dec 11, 1-2:30

Review - Flomeworks, lectures

- Practice Problems online

- Old Final & Solutions

3. Preview of Math 2208

Part T Seguences / Series / Products

(1) Infinite products of holomorphic functions

Weiezshaß Problem

(2) sequences & series of meromorphic functions

Mittag - Jeffler Problem

(3) sequences of hol functions, Month families

Part II : Geometric aspects / Conformal maps

(4) Schwarz Lemma, automorphisms of D, D, S, ...

(5) Riemann mapping theorem

Part III Fur ther topics (depending on time) (6) Runge 5 theorem (7) Schwarg Reflection

Three Motivating Questions for Part -

f to entre has countably many zeroes. that do not

accumulate. In Q.

Weiershap Problem

Given a sequence of dishnet } an], an - so and positive

integers fm, f, is there an entre function with genes

only at for J with order exactly fmn]. ?

Mittag - Jeffler Problem

Take fanjas above.

We can always find a meromorphic function f in a with

poles only at an. e.g. take g solving Weiershaß at

 f_{an} 3 and set $f = \frac{1}{g}$.

Mittag - Jeffler asks if we can fur thermore prescribe

the Lawrent principal parts.

Given fand dishnet, an - so, and polymomials

pr (1) without constant terms, is there a meromorphic

function in a with poles only at an and Laurent expansion

Weiershaß - Poincare' Problem

Is any meromorphic function a guekent of two

holomorphic functions?

These gueshons are further connected with other areas of

mathematics. (number theory, complex geometry,

algebraic geometry)

Tools - seguences, series, products of

helemerphic & meremorphic functions.

This quarter II sequences <u>(11</u>) Series of holomorphic functions.

11 Weiershaß requires infinite products of holomorphic

functions.

Intuitively, this makes sense. We could try to solve

Weiershap by setting $f(z) = \frac{1}{1/2} (z - a_n)$ but convergence is an issue n_{z_1}

[11] Mittag - Leffler reguires infinite sums of meromorphic

functions.

Part IT investigates the following questions

Question A Given 2, V & C are U, V bibolomorphic?

Remark This has implications in topology & differential

grometry. In particular U, V are homeomorphic, diffomorphic

Very Important Theorem (Riemann Mapping Theorem)

Given u, V + C, u, v simply connected => u, V are

biholomorphic.

Question B

Giren U, V E E biholomorphic can we construct

10 one bibo lomorphism u - v explicitly?

In all bibo lomorphism u - v explicitly?

Question C

What are all bibo lomorphisms f: u - u?

Connections w/ Lie theory, hyperbolic geometry.

Part III concerns approximation by polynomials &

Runge's theorem.

Recall Any continuous function f: [a, b] - R can be

approximated by polynomials $p_n \rightrightarrows f$.

Question Can this be extended to holomorphic

functions ?

The answer is quite subtle & is provided by

Runge's theorem.