

$$
\text { Conway III. } 1 \text {, III. } 2 .
$$

1 Power series \& Analytic functions $x \in \mathbb{C}$. , an $\in \mathbb{C}$

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{2} \tag{*}
\end{equation*}
$$

Def / Theorem $\exists R \quad 0 \leq R \leq \infty$ such that
$I l$ if $|z-c|<R \Rightarrow(*)$ converges.

If $0 \leq r<R \Rightarrow(x)$ converges absolutely \& uniformly
$1 n \Delta(c, r)$.

IIL if $|z-c|>R \Rightarrow(*)$ diverges.

Furthermore $\quad R^{-1}=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right| .} \quad R=$ radius of convergence.

Definition $f: u \longrightarrow \mathbb{C} \rightarrow$ analytic if $\forall z_{0} \in U \quad \exists R>0$ such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { in } \Delta\left(z_{0}, x\right) . \leq u .
$$

Prof woos $c=0$, els= work $z^{n+w}=z-c$.

$$
\sum_{n=0}^{\infty} a_{n} z^{n} . w_{n} \operatorname{set} R^{-1}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} . z=t|z|<r
$$

12. Z et $r<\rho<R$. $\Rightarrow \operatorname{limoup} \sqrt[n]{\left|a_{n}\right|}=\frac{1}{R}<\frac{1}{\rho} \Rightarrow$

$$
\begin{aligned}
& \Rightarrow \sqrt[n]{\left|a_{0}\right|}<\frac{1}{\rho} \text { if } n \geq N . \\
& \Rightarrow\left|a_{n}\right|<\frac{1}{\rho^{n}} \quad \text { if } n \geq N \\
& \Rightarrow \frac{\left|a_{n} z^{n}\right|}{f_{n}(z)}<\frac{\left(\frac{r}{\rho}\right)^{n}}{M_{n}} \text { if } n \geq N .
\end{aligned}
$$

Weierokap M-hat
$\left|f_{n}\right| \leq M_{n}$, $\sum_{n} M_{n}<\infty$ then $\sum_{n} f_{n}$ converges absolutely \& uniformly

$$
\Rightarrow \sum_{n} a_{n} 2^{n} \text { converges absolutely a uniformly in } \Delta(0, r) \text {. }
$$

(a) |f $|z|>\rho>R \Rightarrow \limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\frac{1}{R}>\frac{1}{\rho}$
$\Rightarrow \sqrt[3]{\left|a_{n}\right|}>\frac{1}{p}$ for infinitely many n's
$\Rightarrow\left|a_{n}\right|>\frac{1}{\rho^{n}}$ for infinitely many $n^{\prime} s$
$\Rightarrow\left|a_{n} z^{n}\right|>(\underbrace{\left(\frac{1 p 1}{\rho}\right)^{n}}_{>1}$ for infinitely many n's

$$
\Rightarrow a_{n} 2^{n} \nrightarrow 0
$$

$\Rightarrow \sum_{n} a_{n} z^{2}$ diverges.

Differs fiction

Recall that if $f_{n} \longrightarrow f$ it doesn't follow $f_{n}^{\prime} \longrightarrow f^{\prime}$ in
general. However, for power series we have
Theorem (Rubin 8.1).

If $\sum_{n \geq 0} a_{n}(z-c)^{n}$ has radius of convergence R, then $\sum_{n \geq 1} n a_{n}(z-c)^{n-1}$ has radius of convergence P as well.

Furthermore, if

$$
\begin{aligned}
f(z) & =\sum_{n \geq 0} a_{n}(z-c)^{n} \text { in } \Delta(c, R) \\
\Rightarrow f^{\prime}(z) & =\sum_{n \geq 1} n a_{n}(z-c)^{n-1} \text { in } \Delta(c, R) .
\end{aligned}
$$

Corollary $f^{(k)}(z)=\sum_{n \geq k} a_{n} n(n-0) \ldots(n-k+1)(z-c)^{n-k}$

$$
\begin{aligned}
& z=c . \\
& \Rightarrow f^{(n)}(c)=a_{k} f!\Rightarrow a_{k}=\frac{f^{(x)}(c)}{k!} \\
& \Rightarrow f(z)=\sum_{n 20} \frac{f^{(n)}(a)}{n!}(z-c)^{n} \text { if } f i \text { amaffic. in } \Delta(a, R) .
\end{aligned}
$$

The
Remark if f is analytic $\Rightarrow f$ is holomorphic.

Proof $w<06 c=0, \leadsto \sum_{n=0}^{\infty} a_{n} 2^{n}$
Convergence of the series $\sum_{n=1}^{\infty} n a_{n} 2^{n-1}$ is equivalent to convergence of $\sum_{n=0}^{\infty} n a_{n} z^{n}=z\left(\sum_{n=1}^{\infty} n a_{n} z^{n-1}\right)$. The radicle of convergence is $R^{\prime-1}=\operatorname{limoup}_{n \rightarrow \infty} \sqrt[n]{\left|2 a_{n}\right|}=\operatorname{limoup}_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=R^{-9} \Rightarrow$ $\Rightarrow R^{\prime}=R$ using $\sqrt[n]{n} \rightarrow 1$

For the second statement, let $\alpha \in \Delta(0, R)$. We show

$$
\begin{gathered}
f^{\prime}(\alpha)=g(\alpha) \text { where } g(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1} \text { Let } \\
S_{N}(z)=\sum_{n=0}^{N} a_{n} z^{n}, \quad R_{N}=\sum_{n=N+1}^{\infty} a_{n} z^{n}
\end{gathered}
$$

Know $s_{N} \rightarrow f, s_{N}^{\prime} \longrightarrow g$.
$\mathcal{F}_{1 x} \varepsilon>0$. Wish to find $\delta_{\varepsilon}>0$ with

$$
/ \frac{f(\alpha)-f(\alpha)}{\alpha-\alpha}-g(\alpha) /<\varepsilon \text { for } 2 \in \Delta\left(\alpha, \delta_{\varepsilon}\right)
$$

Lat $|\alpha|<\rho<R$.

For $z \in \Delta(0, p)$ we have

$$
\begin{aligned}
(*)=\left|\frac{f(2)-f(\alpha)}{z-\alpha}-g(\alpha)\right| \leq & \left.\frac{s_{N}(z)-s_{N}(\alpha)}{2-\alpha}-s_{N}^{\prime}(\alpha) \right\rvert\, \\
& +/ s_{N}^{\prime}(\alpha)-g(\alpha) / \\
& +\left\lvert\, \frac{R_{N}(z)-R_{N}(\alpha)}{z-\alpha .} / ?!\right.
\end{aligned}
$$

$W=$ estimate each of these terms. Term III

$$
\begin{aligned}
\left|\frac{R_{N}(z)-R_{N}(\alpha)}{z-\alpha}\right| \leq & \left.\sum_{n=N+1}^{\infty}\left|a_{n}\right| / \frac{z^{n}-\alpha^{n}}{2-\alpha} \right\rvert\, \\
\leq & \sum_{n=N+1}^{\infty}\left|a_{n}\right|\left(|z|^{n}+\ldots+|\alpha|^{n-1}\right) \\
\leq & \sum_{n=N+1}^{\infty}\left|a_{n}\right| n \rho^{n-1}<\varepsilon / 3 \\
& \text { if } N \geq N_{1} .
\end{aligned}
$$

for some N_{1}. This is due to the absoluk convergence of

$$
\sum_{n=0}^{\infty} n a_{n} p^{n-1} \quad(\text { since } p<R)
$$

$$
/ s_{N}^{\prime}(x)-g(x) /<\varepsilon / 3 \text { for } n \geq N_{2} \text {. }
$$

Fix $N \geq N_{1}, N \geq N_{2}$. For this N_{1} find δ such that Term - : $\quad / \frac{s_{N}(z)-s_{N}(\alpha)}{z-\alpha}-s_{N}^{\prime}(\alpha) /<\Sigma / 3$ if $z \in \Delta(\alpha, \delta)$.

Conclusion

$$
\begin{aligned}
& (*) \leq \operatorname{Term}-\operatorname{Term} \text { II }+\operatorname{Term} I I<\frac{\varepsilon}{3}+\frac{\Sigma}{3}+\frac{\varepsilon}{3}=\varepsilon \\
& \text { if } z \in \Delta(\alpha, \delta) \cap \Delta(0, p) . \quad \text { QED. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Examples: exp, cos, sin } \\
& \text { Examples: Exp, cos, sin } \\
& \text { [G] } e^{2}:=1+z+\frac{2^{2}}{2}+\cdots+\frac{2^{n}}{n!}+\cdots, R=\infty \text {. Indeed, } \\
& P=\operatorname{limiup}_{n \rightarrow \infty} \sqrt[n]{n!} \geq \lim _{n \rightarrow \infty} \sqrt[\infty]{\left(\frac{n}{2}\right)^{n / 2}}=\limsup _{n \rightarrow \infty} \sqrt{\frac{n}{2}}=\infty \text {. Differentiate } \\
& f^{\prime}(z)=0+1+z+\cdots+\frac{z^{n-1}}{(n-1)!}+\cdots=f(z) \\
& \Rightarrow\left(\tau^{2}\right)^{\prime}=e^{2} .
\end{aligned}
$$

In a ormilar way, $\left(e^{2+c}\right)^{\prime}=e^{2+c}$.
This implies $e^{2+c}=e^{2} \cdot e^{c}$

Indeed, lot $y=\frac{e^{2^{2}+c}}{e^{2}}$ and rok

$$
y^{\prime}=\frac{\left(e^{2+c}\right)^{\prime} e^{2}-e^{2^{2+c}\left(e^{2}\right)^{\prime}}}{e^{22}}=\frac{e^{2+c} \cdot e^{2}-e^{2+c} \cdot e^{2}}{e^{22}}=0
$$

$$
\Rightarrow y \operatorname{conotant;} y(0)=e^{c} \Rightarrow y \equiv e^{c} \Rightarrow e^{2+c}=e^{2} \cdot e^{c} \text {. }
$$

(1) Define

$$
\begin{aligned}
& \cos z:=\frac{e^{12}+e^{-12}}{2}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots \\
& \sin z:=\frac{e^{12}-e^{-12}}{2 i}= \\
= & z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots \\
\Rightarrow & =1-\frac{z^{2}}{2!}+\frac{z^{2}}{4!}-\frac{z^{6}}{6!}+\cdots=\cos z . \\
& (\sin z)^{\prime} \quad \\
& \sin ^{2} z+\cos ^{2} z=1 .
\end{aligned}
$$

Beware! sinz, cosz are not bounded funstions as $\& \in \mathbb{L}$

$$
\cos \sin \pi=\frac{e^{-n \pi}+e^{n \pi}}{2} \longrightarrow \infty \text { as } n \longrightarrow \pm \infty \text {. }
$$

("a) Z^{n} can $b=$ defned for $a l l$ $n \in \mathbb{Z}$. if $z \neq 0$.
II. logarithm

Remark

$$
\begin{aligned}
& e^{2 \pi i}=1 \Rightarrow \text { exponential is not invertible. } \\
& \log 1=0, \pm 2 \pi i, \pm 4 \pi i, \cdots, \pm 2 n \pi i
\end{aligned}
$$

$\xrightarrow[H]{4}$ how should we pict?

Question Define \log z.?

Remark Issues also arise with $\sqrt[n]{z}$ and z^{α}. These are related to the logarithm.

$$
\sqrt[n]{z} \longleftrightarrow z^{\alpha} \text { for } \alpha=\frac{1}{n}
$$

Define $z^{\alpha}:=\exp (\alpha \log z)$

Def A logarithon $l: U \rightarrow \mathbb{C}$ is a continuous function with $e^{l(z)}=z \quad \forall z \in v$.

Naturally, for this to make sense, we need $u \leq \mathbb{C}$ jos.

Question Does l exist? Is it unique?
S

Some times

$$
\text { No }^{2}
$$

Remark If l, l^{\prime} are two logarithms then

$$
e^{l}=e^{l^{\prime}} \Rightarrow e^{l-l^{\prime}}=1 \Rightarrow l-l^{\prime}=2 \pi i n, n \in \mathbb{Z} \text {. }
$$

Any two logarithms differ by $2 \pi i n, n \in \mathbb{V}$.

Examples $U=\Delta(1,1)$,

$$
l(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2}(z-1)^{n}
$$

This is a logarithm in (homework)

Example $B \quad U=\sigma^{-}=\sigma \backslash \mathbb{R}_{\leq 0}$ slit plane

$$
\begin{aligned}
& z=r e^{i \theta} \cdot \operatorname{Sof} \\
& \log z=\log r+i \theta \\
& \theta \in(-\pi, \pi) \Rightarrow e^{\log 2}=z
\end{aligned}
$$

(Principal branch of logarithm).

Notice the capital letter in Log

$$
\text { BEWARE } \quad \log (z w) \neq \log z+\log w
$$

This holds if $\quad R=z>0, \quad R=w>0$.

Remark The two examples above give the same answer in $\Delta(1,1)$.

Indeed the two loganthms $l(\&)$ and $\log ?$ differ by

$$
\begin{aligned}
2 \pi i n & \Rightarrow \frac{\log z-l(z)=2 \pi i n}{} \quad \\
\quad & \operatorname{Sof} z=1 \\
& \Rightarrow \frac{\log 1}{0}-\frac{l(1)}{0}=2 \pi i r \Rightarrow n=0 \\
& \Rightarrow 2 \log z=l(2) \text { in } \Delta(1,1) .
\end{aligned}
$$

Example $\log (1-i)=\log \sqrt{2}+i\left(-\frac{\pi}{4}\right)$.
principal branch

Example C Other branches of log by different cuts

$$
\begin{aligned}
& u=\sigma \mid \mathbb{R}_{\geq 0} e^{i \alpha} \\
& z=r e^{i \theta}, \forall \in(\alpha, \alpha+2 \pi) \\
& \log _{\alpha} z=\log r+i \theta
\end{aligned}
$$

Remark $a \operatorname{la}=\mathbb{C} s\{0\} \Rightarrow$ impossible to define logarithm in u. why?
tb) $U \subseteq \mathbb{a} \backslash\{0\}$ simply connected
\Rightarrow we can define logarithm (later).

Examples A - C are simply connected.

Remark $z^{\alpha}=\exp \left(\alpha \quad l^{\prime}(z)\right)$ is muti-valued
values differ by $\exp (\alpha .2 \pi i \cdot n), n \in \mathbb{Z}$

Example Principal value is defined for $z \in \in \backslash \mathbb{R}_{\leq 0}$. using principal branch of $l(z)$.

For instance, principal volute

$$
\begin{aligned}
(1-i)^{\prime} & =\exp (i \log (1-i)) \\
& =\exp \left(i \cdot\left(\log \sqrt{2}-i \frac{\pi}{4}\right)\right) \\
& =\exp \left(i \log \sqrt{2}+\frac{\pi}{4}\right) \\
& =e^{\pi / 4}(\cos \log \sqrt{2}+i \sin \log \sqrt{2})
\end{aligned}
$$

