$$
\begin{gathered}
\frac{\text { N1ath } 220 A}{\text { Oetober } 9,2023} \\
\text { Octure } 3
\end{gathered}
$$

-. Conformal maps

Def $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \mathbb{R}$ - linear, invertible

IL T is orientation preserving if $d e t T>0$.
[(2) T is angle preserving. if for any vectors $\vec{u}, \vec{v} \in \mathbb{R}^{2}$

$$
亠(\vec{u}, \vec{v})=大(T \vec{u}, T \vec{v}) .
$$

Pomark $T=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ is both orientation \& angle
preserving (unteas $a=b=0$).

- dot $T=a^{2}+b^{2}>0$ if $(a, b) \neq(0,0)$
- angler are preserved since $\top^{\top} z=\alpha z=r=e^{\theta} z, \alpha=r e^{1 \theta}$ is composition of rotation a dilation.

Remark f holomorphic \Rightarrow either $f^{\prime}(z)=0$ or ole
$\Delta f(z)$ is onsmitation \& angle preserving.

$$
\Rightarrow \text { "f preserves angles" } f \text { "conformal" if } f^{\prime}(z) \neq 0 \not z \text {. }
$$

Def $f: u \longrightarrow \sigma$ holomorphic is conformal if

$$
\forall z \in u, f^{\prime}(2) \neq 0
$$

Some other definitions exist in the literature Creguining f to be infective for instance).

Example $f(z)=z^{2}$

$$
z=i y \quad z=1+i y
$$

$$
\begin{aligned}
& z=x+i .1 \Rightarrow z^{2}=\underbrace{x^{2}-1}_{u}+\underbrace{2 x}_{v} i \\
& \Rightarrow u=\frac{v^{2}}{4}-1 \quad \text { parabola (green) } \\
& z=i y \Rightarrow \text { half line } R_{\leq 0}, z^{2}=x \Rightarrow \text { half line } \mathbb{R}_{\geq 0} \\
& z=1+i y \quad \Rightarrow z^{2}=\frac{1-y^{2}}{u}+\underbrace{2 y}_{v}: \\
& \Rightarrow u=1-\frac{v^{2}}{4} \quad \text { parabola (dark blue) }
\end{aligned}
$$

Cheek: Angles are preserved. in there examples

A better piece of terminology is.:

Remark Giren $U, V \subseteq ब$, a bibolomophic map $f: U \longrightarrow v$ is

II f byeative, holomophic
[14] $g=f^{-1}: v \longrightarrow u$ bolomorphic.

$$
\begin{aligned}
\text { If } f(p)=2 & \Rightarrow f \circ g(z)=z \\
& \Rightarrow g^{\prime}(q)=\frac{1}{f^{\prime}(p)}, f^{\prime}(p) \neq 0 .
\end{aligned}
$$

Thus biholomorphic \Rightarrow conformal

Important Question

Given $u, v \subseteq 区$, are they biholomorphic?
II. Möbius Transforms

Today we study a class of twarofrmations which are important for geometric arguments.

Möbius transformations (MT)

Fractional hear transformations (FLT)
Linear factional tRansformations ($\angle F T$)

August Ferdinand Möbius (1790-1868)
Möbius strip, Möbius enverscon, Möbius transform Möbius published important work in astronomy.

Definition $\hat{\epsilon}=\mathbb{C}_{\infty}=\Phi u\{\infty\}$ Riemann sphere

$$
\begin{aligned}
& \text { Topology on } \mathbb{C}^{2} \text {-usual upon seton in } ब \\
& \text { - per sots containing } \infty \text {. } \\
& \infty \in u \subseteq \hat{\mathbb{C}} \text { open if } \cdot \forall u \in u, u \neq \infty f \Delta(u, R) \subseteq u \\
& \text { - for } u=\infty, \exists R \text { with } \\
& \{z:|z|>R\} \leq u \\
& \text { ? neighborhood of } \infty \text {. }
\end{aligned}
$$

stereographic projection

Definiton Möbius hanoformations MT.

$$
\begin{array}{r}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], h_{A}: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}, z \rightarrow \frac{a z+b}{c z+d} \\
\text {, invertible matix }
\end{array}
$$

This is a biholomophism" of $\hat{\sigma} . \quad \frac{1}{0}=\infty, \frac{1}{\infty}=0$
h_{A} is a homeomorphism of $\widehat{\widetilde{C}}$.

Remark
II $A=\mathbb{I} \Rightarrow h_{A}=\mathbb{1}$.
(II) $A=\lambda B \Longleftrightarrow h_{A}=h_{B}$. for $\lambda \neq 0$.
(IIT) $\quad h_{A B}=h_{A} \circ h_{B}$ if $B=A^{-1} \Rightarrow h_{A^{-1}}=h_{A}^{-1}$.

Möbicus harsforms $\longleftrightarrow P G L_{2}=G L_{2} /$ canter .
"projectire lisear group."

Most famous example Cayley hansform

$$
c(z)=\frac{z^{2}-i}{z+i}, \quad c^{-1}(w)=; \cdot \frac{1+w}{1-w}
$$

Notation $\Delta=\Delta(0,1)=$ unit disc

$$
\mathcal{J}^{+}=\left\{2: \ln z^{2}>0\right\}=\text { half-plame }
$$

Very important C is a biholomorphism

$$
c: 3^{+} \longrightarrow \triangle
$$

\jmath^{+}

Proof
Suffices to show

Arthur Caytey (1821-1895)

- worked in algebraic geometzy, Growp theory
- Cayley - Hamilton theorem
- modern defonition of a groupo

Remark

$$
\begin{aligned}
& \quad \frac{a z+b}{c z+d}=\frac{b c-a d}{c^{2}} \cdot \frac{1}{z+\frac{d}{c}}+\frac{a}{c} \\
& c=0: \quad \frac{a z+b}{d}=\frac{a}{d} \cdot z+\frac{b}{d} .
\end{aligned}
$$

TYpes of Mobius hansforms
12 Aranslation $T z=Z+\lambda$
[11) rotatons $R z=e^{i \theta} \cdot z$
[w] dilations $\triangle Z=m Z Z . m \in \mathbb{R}$.
IV) inversion sz $=\frac{1}{z}$.

Ľmma All Möbius hansformo are compositons of

$$
\pi-\sqrt{\pi 0}
$$

Generalized circles in $\widehat{\sigma}$
1 (i) circtes in a
$\boxed{14} \operatorname{line}<U\{\infty\}=\operatorname{circte}$ in $\widehat{\mathbb{C}}$ through ∞."

Main theorms about Mobius hansforms

Theorem A Any Mo'bius hansform maps generalized circles to generalized cirotes.

Theorm B p $C L_{2}$ acto triply hanoitively on $\widehat{\sigma}$.
Given $\left(z_{1}, z_{2}, z_{3}\right),\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right)$ hiples of distinct elts in $\widehat{\mathbb{C}}, \exists!\mathcal{W}$ with $h\left(z_{i}\right)=Z_{2}$.

Proof of ThmA Suffices to consider the cases
IG) translation $z \longrightarrow z+\lambda$ clear
4 notation $z \longrightarrow e^{1 \alpha} z$ clear
Lu i dilation $z \longrightarrow m z$ clear

II inversion $z \longrightarrow 1 / z$.

Claim A generalized circle is given by
(*) $A z \bar{z}+B z+C \bar{z}+D=0$. where $A, D \in \mathbb{R}$.
and B, C are conjugates.

Proof A circle in a is given by

$$
\begin{aligned}
&\left|2-z_{0}\right|=r \Longleftrightarrow\left(2-z_{0}\right) \cdot\left(\bar{z}-\overline{z_{0}}\right)=r^{2} \\
& \Leftrightarrow z \bar{z}-\bar{z}_{0} z-z_{0} \bar{z}+\left(z_{0} \overline{z_{0}}-r^{2}\right)=0
\end{aligned}
$$

$\Rightarrow \quad(*)$ for $A=1, D=z_{0} \bar{z}_{0}-r^{2}, B=-\bar{z}_{0}, C=-z_{0}$
Converovly, if $A \neq 0,(*)$ can be brought into this form. (why?)
When $A=0: \underline{B Z+C \bar{Z}}+D=0 \Leftrightarrow$ line.

Proof IN preserves generalized circles.

$$
\begin{aligned}
A z \bar{z} & +B z+C \bar{z}+D=0 \\
\text { Let } w=\frac{1}{z} & \Rightarrow A \cdot \frac{1}{w \bar{w}}+\frac{B}{w}+\frac{C}{w}+D=0 \\
& \Rightarrow A+B \bar{w}+C w+D w \bar{w}=0 \\
& \Rightarrow \text { generalized aide. } \Rightarrow \operatorname{Thm} A .
\end{aligned}
$$

In the cave of lines $L \cup \infty, 0$ and ∞ correspond under

Proof of the B Uniqueness Assume F h, h^{\prime}

$$
\begin{array}{ll}
z_{1} \xrightarrow[h^{\prime}]{h} z_{0}^{\prime} & z_{z}+T=h^{\prime} \cdot h \Rightarrow T(z ;)=z_{i}, \\
z_{2} \xrightarrow[h^{\prime}]{h} z_{2}^{\prime} & \Leftrightarrow \frac{a z+b}{c z+d}=z \text { has } 3 \text { roots } z_{1}, z_{2}, z_{3} \\
z_{3} \xrightarrow[\hbar_{1}]{\hbar^{\prime}} z^{\prime} & \Leftrightarrow a z+b=c z^{2}+d \text {, has } 3 \text { roots } \\
& \Leftrightarrow a=d, b=c \Rightarrow T=\| \Rightarrow h=h^{\prime}
\end{array}
$$

Existence Suffices: $7 h$ with

$$
\begin{array}{ll}
z_{1} \xrightarrow{h} 0 h^{\prime}, & h\left(z_{1}\right)=0 \\
z_{2} \xrightarrow{h} z_{1}^{\prime}, ~ & h\left(z_{2}\right)=0 \\
h \quad z_{2}^{\prime}, & h\left(z_{3}\right)=\infty .
\end{array}
$$

If $\left(2, \prime, R_{2}^{\prime}, R_{3}^{\prime}\right)$ is another tipple, find h^{\prime} with

$$
h^{\prime}\left(z_{1}^{\prime}\right)=0, \quad h^{\prime}\left(z_{2}\right)=0, \quad h^{\prime}\left(z_{3}\right)=\infty .
$$

Define $T={h^{\prime-\prime}}_{0} h \Rightarrow T\left(z_{i}\right)=Z_{2}^{\prime}$ as needed.

To deal with $\left(2, R_{2}, 2_{3}\right)$ and $(0,1, \infty)$.
(Modified) Cross ratio If $2,2_{2}, 2_{3} \neq \infty$,

$$
h(z)=\frac{z-z_{1}}{z-z_{3}} / \frac{z_{2}-z_{1}}{z_{2}-z_{3}}
$$

This is sometimes denoted $\left[2: Z_{1}: Z_{2}: Z_{3}\right]$.

$$
\text { Check } \begin{aligned}
& h\left(z_{3}\right)=0 \\
& h\left(z_{2}\right)=1 \\
& h\left(z_{3}\right)=\infty .
\end{aligned}
$$

There are 3 remaining ease $2_{1}=\infty, z_{2}=\infty$ or $Z_{3}=\infty$.
For example, when $2_{1}=\infty$. the above expression is

$$
h(z)=\frac{z_{2}-z_{3}}{2-z_{3}}, h\left(z_{1}\right)=0, h\left(z_{2}\right)=1, h\left(z_{3}\right)=\infty .
$$

The other cases are similar.

Remark Conway's cross ratio sands $2_{1}, 2_{2}, z_{3}$ to $1,0, \infty$. We will not need the motor lake. so the difference will not concern us.

Next Integration \& Cacuoby theory.

