$$
\text { Math } 2204 \text { - Zeoture } 4
$$

October 11, 2023
I. Cauchy theory \& Integration (Conway IV)

The theory of integration is crucial to complex analysis. Many important results have as starting point Cauchy's integral formula.
§1. Complex integration
(a) $U \subseteq \mathbb{C}$ open \& conneckd

$$
\gamma:[a, b] \longrightarrow u \quad c^{\prime}-p a t h
$$

II length $(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t$.
([i) c'reparametrization $\hat{\gamma}:[\vec{a}, \hat{b}] \rightarrow u$

$$
\hat{\gamma}=\gamma \cdot \Phi, \Phi:[\hat{a}, \hat{b}] \rightarrow[a, b]
$$

Orientation preserving: $\phi^{\prime}>0$.
(6) A piecewise C^{1} - path

$$
\begin{gathered}
\gamma=\gamma_{1}+\ldots+\gamma n, \gamma ; \text { of class } \zeta^{\prime} \text {. } \\
\text { if } \exists a=a_{0}<a_{1}<\ldots\left\langle a_{n}=b\right. \\
\gamma /\left[a_{i-1}, a_{i}\right]=\gamma_{i}
\end{gathered}
$$

[C $7: u \longrightarrow \mathbb{C}$ continuous, Define

This is independent of orientation preserving repara metrization

$$
\underbrace{\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{\hat{a}}^{\hat{b}} f(\hat{\gamma}(s)) \cdot \hat{\gamma}^{\prime}(v) d s}_{t=\phi(s)}
$$

This is change of variables: $f(\gamma(t))=f(\hat{\gamma}(s))$

$$
\gamma^{\prime}(t) d t=\hat{\gamma}^{\prime}(s) d s
$$

Remark $\int_{-\gamma} f d z=-\int_{\gamma} f d z$ after changing orientation

Remark The definition extends to piecewise $c^{\prime \prime}$ paths

$$
\int_{\gamma} f d z=\int_{\gamma_{1}} f d z+\cdots+\int_{\gamma_{n}} f d z .
$$

In particular, we can define $\int_{\partial R} f d / 2, R$ rectangle.

Remark Conway works with rectifiable paths.
In the elementary theory of analytic functions it is seldom necessary to consider arcs which are rectifiable, but not piecewise differentiable. However, the notion of rectifiable arc is one that every mathematician should know.

$$
\begin{gathered}
\text { Ahlfors - Complex Analysis, } 3^{\text {rd }} \text { edition } \\
\text { page } 105
\end{gathered}
$$

Fundamental eshmak Assume $|f| \leq M$ along γ

$$
\Rightarrow / \int_{\gamma} f d z / \leq \operatorname{longth}(\gamma) . M \text {. }
$$

$$
\begin{aligned}
\text { Proof } \mid \int_{\gamma} f d z / & =/ \int_{a}^{b} f(\gamma(t)) \cdot \gamma^{\prime}(t) d t \mid \\
& \leq M \int_{a}^{b}\left(\gamma^{\prime}(t)\right) d t \\
& =M \cdot \text { length }(\gamma)
\end{aligned}
$$

Augustin-Louis Cauchy (1789-1857) was a French mathematician who made contributions to several branches of mathematics including complex analysis.

Cauchy was a prolific writer: 800 research articles and 5 textbooks.

Example $A \quad \gamma=$ circle of radius $\sigma, \gamma(t)=r e^{i t}$.

$$
\begin{aligned}
\int_{\gamma} z^{n} d z & =\int_{0}^{z=r e^{\prime t}} r^{n \pi} e^{i n t} \cdot r e^{\prime t} \cdot d t \\
& =\int_{0}^{2 \pi} r^{n+1} e^{i(n+1) t} i d t \\
& =\left.r^{n+1} \frac{e^{i(n+1) t}}{i(n+1)} \cdot i\right|_{t=0} ^{t=2 \pi}=0 . \quad n \neq-1
\end{aligned}
$$

When $n=-1$

$$
\int_{\gamma} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{r e^{i t} \cdot}{r e^{i t}} d t=\int_{0}^{2 \pi} \cdot d t=2 \pi \theta^{0}
$$

Remember this example!

Example $B \quad f$ admits primitive $F, f=F$!

$$
\begin{aligned}
\int_{\gamma} f d z & =\int_{a}^{b} F^{\prime}(\gamma(t)) \cdot \gamma^{\prime}(t) d t \\
& =\int_{a}^{b}(F(\gamma(t)))^{\prime} d t=F(\gamma(b))-F(\gamma(a)) .
\end{aligned}
$$

Path independence!

II. Existence of primitives
$u \leq e$ open conneckd, f continuous. We show three results.
Proposition A TFAE
II f admits a primitive
[m] $\int_{\gamma} f d z=0 \quad \forall \gamma$ piecewise c^{\prime} loop.

Remark II \Rightarrow [G] is clear by Example B.

Remark $\frac{1}{z}$ does rit admit a primitive in $u=\sigma^{x}$. since $\int_{\gamma} \frac{d z}{z}=2 \pi i$ by Example A.
$\Rightarrow \nexists$ no logarithm in $U=\mathbb{C}^{x}$.

Proposition B If $u=\Delta=$ disc. TFAE
II 7 admits punitive
[ii] $\int_{\partial R} f d z=0$ for all rectangles $\bar{P} \subseteq U$.

Compare: A	Prop B.
$U \subseteq \sigma$	$u=\Delta$
γ piecewise C^{\prime}	$\gamma=\partial R$

Proposition c If $f: u \rightarrow \mathbb{C}$ holomorphic $\Rightarrow \int_{\partial R} f d z=0$
for all rotangles $\bar{R} S U$. (Goursat's lemma)

Remark f^{\prime} is not assumed continuous. If f^{\prime} is continuous an easier proof can be glen.

Corollary If $f: \Delta \rightarrow \sigma$ is holomorphic,

$$
\int_{\gamma} f d z=0 \forall \gamma \text { piecewise } c^{\prime}-l o o p \text { in } \Delta .
$$

This is a form of Cauchy's theorem.

Proof By B+C, f admits a primitive. The conclusion follows from A.

Edouard Goursat $1858-1936$

J'ai reconnu depuis longtemps que la demonstration du theoreme de Cauchy, que j'ai donnee en 1883, ne supposait pas la continuite de la derivee.
(I have recognized for a long time that the demonstration of Cauchy's theorem which I gave in 1883 didn't really presuppose the continuity of the derivative.)

Sur la definition generale des functions analytiques, d'apres Cauchy.
Trans. AMS, 1900, 14-46.

Proposition A TFAE
II f admits a primitive
[ai $\int_{\gamma} f d z=0 \quad \forall \gamma$ piecewise c^{\prime} loop.

Proof 1 [111 follows by path independence.
四 \Rightarrow Fa $p \in U$ and define
$F(g)=\int_{\gamma} f d z$ whore γ is a piecewise c^{\prime}
path in u joining p to 2 .

$$
\text { This is well. defined } \begin{aligned}
& \Longleftrightarrow \int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z . \\
& \Longleftrightarrow \int_{\eta} f d z=0 \text { where } \eta=\gamma_{1}+\left(-\gamma_{2}\right) \\
& \text { which holds due to II. }
\end{aligned}
$$

Claion $F^{\prime}=f$

Proof $F_{1 x} g \in U, \varepsilon>0$. Let $\delta>0$ with
(*) $|f(z)-f(z)|<\varepsilon$ if $z \in \Delta(2, \delta)$.

We compute

$$
\begin{gathered}
\left|\frac{F(g+h)-F(g)}{h}-f(g) /=\left|\frac{1}{\hbar} \int_{2}^{2+h^{p}} f(z) d z-f(2)\right|\right. \\
=\frac{1}{|h|} / \int_{2}^{2+h}(f(z)-f(2)) d z / \\
\quad<\varepsilon \text { by }(z) \text { if }|h|<s . \\
\leq \frac{1}{|h|} \cdot \operatorname{longth}[2,2+\hbar] \cdot \varepsilon . \\
=\frac{1}{|h|} \cdot|h| \cdot \varepsilon=\varepsilon \Rightarrow F^{\prime}=f
\end{gathered}
$$

Question why can we always find a piecewise C^{\prime} path?
$Z_{e} t$

$$
\mathcal{A}=\left\{2 \in u: 7 \text { piecewise } c^{\prime} \text { path from } p \text { to } 2\right\} \text {. }
$$

$x \neq \phi$ since $p \in \mathbb{X}$.
We show X is open \& closed in $U=$ connected, hence

$$
x=U \text {, as alarmed. }
$$

X open. $Z=t \quad 2 \in X \Rightarrow \exists R>0$ with $\Delta(2, R) \subseteq U$.

for $q^{\prime} \in \Delta(2, R)$, join p to $q($ since $2 \in k)$ $\Delta(2, R)$.

Join 2 to g^{\prime} (via line segment).

$$
\Rightarrow g^{\prime} \in x \Rightarrow \Delta(g, R) \subseteq \nRightarrow \Rightarrow \text { open. }
$$

X closed. $Z_{0}+q \in \partial X$. We show $q \in X$.

$$
\text { Let } q^{\prime} \in x, q^{\prime} \in \Delta(q, \varepsilon) \subseteq u .
$$

Join p to q^{\prime} by a piecewise C^{\prime} path. \&
2^{\prime} to q by line segment thus foining p to 2

$$
\Rightarrow q \in X
$$

Proposition B If $u=\Delta=$ disc. TFAE
II I admits pomitire
[ii) $\int_{\partial R} f d z=0$ for all rectangles $\bar{R} \subseteq U$.
Proof W_{z} only meed [it \Rightarrow 四. Lot $p \in U$.

$$
D=f \text { fine } F(g)=\int_{\gamma} f d z \text { whore }
$$

γ is a path from s to 2. consisting of two segments parallel to the axes. Such a path exists since $u=\Delta=\operatorname{dis} c$.
Glam $F^{\prime}=f$.
Proof $F(g+h)-F(g)=\int_{p}^{2+h} f d z-\int_{p}^{2} f d z=\int_{z}^{z+h} f d z$

For the red path foo 2 to $2+h$, the same argument applies, the length of the path $\leq 2 \mathrm{IL} /$.

