$$
\text { Math } 220 \mathrm{~A} \text { - Zeature } 5
$$

October 16, 2023

Proposition c If $f: u \rightarrow \in$ holomorphic $\Rightarrow \int_{\partial R} f d z=0$
for all rectangles $\bar{P} \subseteq U$. (Goursat's lemma)
(We tacitly assume rectangles hare sides pardlel to axes.)

Proof $z=t A=/ \int_{\partial R} f d z /$.
Lot $\varepsilon>0$ arbitrary. Wish $A=0$. we wo l" show

$$
A<K \varepsilon \nleftarrow \varepsilon .>0 \text {. }
$$

for some $K>0$.
subdivide rectangle R into 4 equal rectangles $R_{1}^{1}, R_{1}^{R} R^{3}, R^{4}$.

$$
\Rightarrow A=/ \int_{\partial R} f d^{d z} /=/ \sum_{j=1}^{4} \int_{\partial R^{j}} f d z / \leq \sum_{j=1}^{4} / \int_{\partial e^{0}} f d z /
$$

$\Rightarrow 7$ rectangle (out of $\left.R^{\prime}, R^{3}, R^{3}, R^{4}\right)$, call it $R^{(n)}$, with

$$
\frac{A}{4} \leqq \mid \int_{\partial R^{(i)}} f d z /
$$

Continue inductively. We obtain a sequence of reotangtes

$$
R \supseteq R^{(1)} \supseteq R^{(2)} \supseteq \ldots \quad, \operatorname{diam} R^{(n)} \longrightarrow 0
$$

such that

$$
\frac{A}{4^{2}} \leq \int_{\partial R^{(n)}} f d z /
$$

By compactroes, $\prod_{n=0}^{\infty} R^{(n)}=\{c\}$. Since f is holomorphic

$$
\begin{aligned}
& / \frac{\frac{f(z)-f(c)}{z-c}-f^{\prime}(c) /<\varepsilon \text { if } z \in \Delta(c, \delta) \text {, for some } \delta>0 \text {. }}{x(z)} / \\
& \Rightarrow|\chi(z)|<\varepsilon \text { \& } f(z)=f(c)+(z-c) f^{\prime}(c)+(z-c) x(z) \text {. } \\
& \left.\Rightarrow \frac{A}{4^{n}} \leq / \int_{\partial R^{(n)}} f d z /=\iint_{\partial R^{(n)}} \frac{f(c)+(z-\alpha) f^{\prime}(c)}{0 \text { admits }} \begin{array}{c}
\text { primitive }
\end{array}\right) x(z-c) x(z) d z / \\
& =\iint_{\partial R^{(n)}}(z-c) x(z) d z / \downarrow \quad \text { if } n \gg 0 . \quad \begin{array}{l}
R^{(n)} \subseteq \Delta(c, \delta) \\
\text { if }
\end{array} \\
& \leq \operatorname{diam}\left(R^{(n)}\right) . \varepsilon \operatorname{length}\left(\partial R^{(n)}\right) \text {. } \\
& =\varepsilon \cdot \frac{\operatorname{diam}(F)}{2^{n}} \cdot \frac{\operatorname{leggth}(\partial F)}{2^{n}}=\frac{\varepsilon}{4^{n}} K . \\
& \Rightarrow A<K \varepsilon \quad \forall \varepsilon>0 \Rightarrow A=0 \text {. }
\end{aligned}
$$

H WK 3, \#5
Remark A simpler proof can be given using Green's
theorem if f^{\prime} is assumed continuous. The point is that we don't make this assumption.

Remark In IV. 8. Conway cises triangles versus rectangles.

Corollary. $f: \Delta \rightarrow \varepsilon$ holomorphic

$$
\begin{aligned}
& \stackrel{C}{\Rightarrow} \int_{\partial R} f d z=0 \quad \forall \bar{R} \subseteq \Delta \\
& \stackrel{B}{\Rightarrow} f \text { admits a primitive } \\
& \stackrel{A}{\Rightarrow} \int_{\gamma} f d z=0 \quad \forall \gamma \text { piecewise } c^{\prime} \\
&
\end{aligned}
$$

We seek improvements
New assumption.
(*) $f: u \longrightarrow \mathbb{C}$ continuous, f holomorphic in ul\{a\} . ~

Proposition $C^{+} f$ satiofies (*) then $\int_{\partial R} f d z=0$

$$
\text { for all } \bar{R} \leq u \text {. }
$$

Proof II If a is outside \bar{R}, l let $U^{\text {new }}=U \backslash\{a\}$
 we may assume a is a vertex.

LiI If a is a vertex, let R_{e} be a square of side ε with vertex a.

By Proposition C we know $\int_{\partial R_{j}} f d z=0$ for $J=1,2,3$.
From here, it immediately follows $\int_{\partial R} f d z=\int_{\partial R_{\varepsilon}} f d z$.

To condude, suffices $\int_{\partial R_{z}} f d l^{2} \longrightarrow 0$ as $\varepsilon \rightarrow 0$. (t)

To show this, care that f is continceus at a. Then $|f(z)| \leq|f(a)|+1$ if $z \in R_{\varepsilon}$ for ε small

$$
\Rightarrow\left|\int_{\partial R_{\varepsilon}} f d z\right| \leq(|f(a)|+1) \frac{\text { length }\left(\partial R_{z}\right)}{4 \varepsilon} \rightarrow 0 \text { as } \varepsilon \rightarrow 0 .
$$

Corollary_ $f: \Delta \rightarrow \sigma$ continuous, 7 holomorphic in $\Delta\{a\}$

$$
\stackrel{c^{+}}{\Rightarrow} \int_{\partial R} f d z=0 \quad \forall \bar{R} \subseteq \Delta
$$

$\stackrel{B}{\Rightarrow}$ f admits a primitive

$$
\stackrel{\Delta}{\Rightarrow} \int_{\gamma} f d z=0 \quad \forall \gamma \text { piceowise } c^{\prime}
$$

Cauchy Integral Formula (local form)
$f: u \longrightarrow \in$ holomorphic. Z ut $\triangle \subseteq u, a \in \Delta$. Then

$$
f(a)=\frac{1}{2 \pi i} \int_{2 \Delta} \frac{f(z)}{z^{2}-a} d z
$$

Remark The formula show $f / \partial \Delta$ determines f in Δ !

$\Rightarrow F$ continuous on U. \& holomopobic in $u \backslash\{a\}$.
Jot $\tilde{\Delta}$ st. $\bar{\Delta} \subseteq \tilde{\Delta} \subseteq \bar{\Delta} \subseteq u$.

Apply corollary t to $F / \tilde{\Delta}$ and $\gamma=\partial \Delta$. We find

$$
\begin{aligned}
& \int_{\partial \Delta} F d z=0 \Rightarrow \int_{\partial \Delta} \frac{f(z)-f(a)}{z-a} d z=0 . \\
\Rightarrow & \frac{1}{2 \pi i} \int_{\partial \Delta} \frac{f(z)}{z-a} d z=f(a) \cdot \frac{1}{2 \pi i} \cdot \int_{\partial \Delta} \frac{d z}{z-a}=f(a) \\
\Rightarrow & \text { Local cauchy. }
\end{aligned}
$$

\Rightarrow Local Cauchy.

Remark This is a version of Conway IV.2.6.
The difference with Conway is that we do not assume continuity of the derivative! This assumption is removed in Conway later in IV. B, so we are arriving at the same conclusions in the end.

The presentation here is dosed to Ahlfors, Chapter IV.

Zemma $1 f a \in \Delta \Rightarrow \int_{\partial \Delta} \frac{d z}{z-a}=2 \pi i$
Proof Stepl $\mathcal{L e}_{\mathrm{t}}$ a be the conter of Δ. Then

$$
\begin{aligned}
& \int_{\partial \Delta} \frac{d z}{\underbrace{2-c}_{w}}=2 \pi i^{\circ} \\
\Leftrightarrow & \int_{\partial \Delta(0, R)} \frac{d w}{w}=2 \pi i^{\circ}
\end{aligned}
$$

which we saw in Jechure 4.
Step 2
It sufficts to show $\int_{\partial \Delta}\left(\frac{d z}{z-a}-\frac{d z}{z-c}\right)=0 \Leftrightarrow \int_{\partial \Delta} h d z=0$
Zot $\mathscr{h}(z)=\frac{1}{z-a}-\frac{1}{z-c} \quad w_{c}$ ahow that h admite a
\measuredangle prancipal branch
promitive in $\mathbb{C} \backslash[a, c]$. Lat $\log \frac{z-a}{z-c}=g(z)$ cheok
$\Rightarrow g^{\prime}=h \Rightarrow \int_{\partial \Delta} \hbar d z=0$ by Propooition 4 .
losue W_{e} need to show $\frac{z-a}{z-c} \in \sigma^{-}=\mathbb{R}, \mathbb{R}_{\leq 0}$.
If $\frac{z-a}{z-c}=-u, u \in R_{\geq 0} \Rightarrow z=a \cdot \frac{1}{u+1}+c \cdot \frac{u}{u+1} \cdot 6$ \in segment from a to c., false!

Winding number (index) Lot a $\notin\{r\}^{5}$. (=image of γ).

Define $n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}$

Conway IV. 4
Example A
γ anole positive orientation

$\Rightarrow n(\gamma, a)=1$ if $a \in \ln t \gamma$. by the Lemma.

5 goes k times around 0 .
Example $B \quad \gamma_{k}(t)=e^{2 \pi i t k}, 0 \leq t \leq 1$.

$$
\begin{aligned}
& \Rightarrow n\left(\gamma_{k}, 0\right)=k \cdot \operatorname{lndeed} \\
& n\left(\gamma_{k}, 0\right)=\frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{d z}{z}= \\
&=\frac{1}{2 \pi i} \int_{0}^{1} \frac{e^{2 \pi i b k} \cdot 2 \pi i k}{e^{2 \pi i \cdot k}} d t \\
&=k .
\end{aligned}
$$

Stronger Cauchy's Integral Formula for discs

Z et $f: \Delta \longrightarrow \sigma$ holomorphic.
γ closed c^{\prime} loop in $\Delta, a \in \Delta \backslash\{r\}$. Then

$$
f(a) \cdot n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

More on winding numbers.
Lemma

$$
n(r, a) \in \mathbb{Z} \text { for all a } d\{r\} \text {. }
$$

Proof next time.

Properties
[] $n(-\gamma, a)=-n(\gamma, a) \quad$ (change of orientation)
Proof: $\quad \int_{-\gamma} \frac{d z}{z-a}=-\int_{\gamma} \frac{d z}{z-a}$
III $\gamma=\gamma_{1}+\gamma_{2} \Rightarrow n(\gamma, a)=n\left(\gamma_{1}, a\right)+n(\gamma, a)$

Proof:

$$
\int_{\gamma} \frac{d z}{z-a}=\int_{\gamma_{1}} \frac{d z}{z-a}+\int_{\gamma_{2}} \frac{d z}{z-a}
$$

$\sqrt{I I I} n(\gamma,-): \mathbb{C} \backslash\{\gamma\} \longrightarrow \mathbb{Z}$ is locally constant
$n(\gamma, a)=0$ for a in the unbounded component of $\Phi \backslash\{r\}$.

Proof next the

