$$
\text { Math } 220 \text { A - Zerture } 6
$$

October 18, 2023

Last time: Winding number (index)
γ piecewise c^{\prime} loop, $a \notin\{\gamma\}$.

$$
n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a} \in \mathbb{Z}
$$

Lemma $n(\gamma, a) \in \mathbb{Z}$ for all a $\operatorname{ti}\{\gamma\}$. Conway
Proof $n(\gamma, a)=\frac{1}{2 \pi i} \int_{\alpha}^{\beta} \frac{\gamma^{\prime}(s)}{\gamma(s)-a} d s$ where
$\gamma:[\alpha, \beta] \rightarrow U$ is a piecewise $c^{0} \operatorname{loop} \gamma(\alpha)=\gamma(\beta)$.
Consider $h(t)=\int_{\alpha}^{t} \frac{\gamma^{\prime}(s)}{\gamma(s)-a} d s ., h(\alpha)=0$.
Want $h(\beta) \in 2 \pi i \mathbb{Z}$.
Compuk

$$
\begin{aligned}
& h^{\prime}(t)=\frac{\gamma^{\prime}(t)}{\gamma(t)-a} \cdot \\
\Rightarrow & \left(e^{-h(t)}(\gamma(t)-a)\right)^{\prime}=e^{-h(t)}(-\underbrace{h^{\prime}(t)(\gamma(t)-a)+\gamma^{\prime}(t)}_{0}) \\
\Rightarrow & e^{-h(t)}(\gamma(t)-a) \text { constant. }
\end{aligned}
$$

Lot $t=\alpha, t=\beta$. Then, we find

$$
\begin{aligned}
& e_{1}^{-\ell^{-f(\alpha)}}(\gamma(\alpha)-a) \\
k & e^{-h(\beta)}(\gamma(\beta)-a) . \\
\Rightarrow & e^{-h(\beta)}=1 \Rightarrow h(\beta) \in 2 \pi i \mathbb{Z} . \text { QED. }
\end{aligned}
$$

Lemma $n(\gamma,-): \mathbb{C} \backslash\{\gamma\} \rightarrow \mathbb{Z}$ is locally constant and $n(\gamma, a)=0$ for a in the unbounded component of $\mathbb{I} \backslash\{r\}$.

Proof

Let R be a component
of $a,\{r\}$. If $a, b \in R$
$\Rightarrow a, b$ can be joined
by a polygonal path in R.

This is the same argument used in dreoture 4 to show we can foin by piecewise C^{\prime} path.

Suffices to show if $\overline{a b} \subseteq R$

$$
\begin{aligned}
& \Leftrightarrow n(\gamma, a)=n(\gamma, b) \quad a= \\
& \Leftrightarrow \int_{\gamma} d z\left(\frac{1}{z-a}-\frac{1}{z-b}\right)=0 .
\end{aligned}
$$

$$
\text { a to } b
$$

This is tun $=$ since $\log \frac{2-a}{2-b}$ is a primitive of the in tegrand. \& Proportion A. We showed $\log \frac{2-a}{2-b}$ is are Il defined in $ब \backslash \overline{a b} \underline{\underline{a b}}\{\gamma\}$ in Zeoture 5 .

If U is the unbounded component, $l=t$ $R \gg 0$. such that $\{r\} \subseteq \Delta(0, R)$. L ut m be the value of $n(\gamma, \ldots)$ on U. Want $m=0$.

Pick $|a| \geq 2 R, a \in U$. Then

$$
\begin{aligned}
& |z-a| \geq|a|-|z| \geq 2 R-R=R \text { if } \\
& z \in\{r\} \Rightarrow \\
& |m|=\ln (\gamma, a)\left|=\frac{1}{2 \pi} / \int_{\gamma} \frac{d z}{z-a}\right| \leq \\
& \leq \frac{1}{2 \pi} \cdot \frac{1}{R} \cdot \text { length }(\gamma) \text {. }
\end{aligned}
$$

Make $R \longrightarrow \infty \Rightarrow n(\gamma, a)=m=0$.

Rudiments of algebraic topology

$$
\pi_{1}(x)=(\text { based) loops in } x / \sim
$$

can be shown
isomorphism \sim_{s}

$$
\begin{aligned}
\pi_{1}(\mathbb{C},\{a\}) \longrightarrow \mathbb{Z} & \text { well-dofired } \\
\gamma & \longrightarrow n(\gamma, a) . \text { by 值 below }
\end{aligned}
$$

Two questions arise
（a）Can we define integrals over γ continuous？
（b）$\gamma_{1} \sim \gamma_{2} \Longrightarrow n\left(\gamma_{1}, a\right)=n\left(\gamma_{2}, a\right)$ ．

Answer to Ia YEs．If f holomorphic，γ continuous we define $\int_{\gamma} f d z$ ．F ideas from analytic continuation Wrewlll not pursue this here．

Ans war to Tb）YEs．Cauchy＇s Theorem（Homotopy） Conway $\bar{V} .6$ ．

We reparamefrize so that the domain is $I=[0,1]$.

Homotopy $\gamma_{0}, \gamma_{1}: I \longrightarrow U$ continuous loops
$\gamma_{0} \stackrel{u}{\sim} \gamma_{2}$ if $\exists h: I \times I \longrightarrow U$ continuous

$$
\begin{aligned}
& h(t, 0)=\gamma_{0}(t), \quad h(t, 1)=\gamma_{1}(t) . \\
& h(0, s)=h(1, s) .
\end{aligned}
$$

$\Longrightarrow \quad \gamma_{s}(t)=h(t, s)$. continuous loop.

Def $\gamma_{0}, \gamma_{0}: I \longrightarrow U$ continuous paths from P to Q

$$
\begin{gathered}
\gamma_{0} \underset{\sim E}{\sim} \gamma_{0} \text { if } \exists h: I \times I \longrightarrow u \text { continuous } \\
h(t, 0)=\gamma_{0}(t), f(t, 0)=\gamma,(t) . \\
h(0,0)=p, \quad h(1, s)=Q .
\end{gathered}
$$

Remark Ia \sim is an equivalence relation

$$
\gamma_{0} \stackrel{u}{\sim} \gamma_{1}, \gamma_{1} \sim \sim \gamma_{2}^{\sim} \Rightarrow
$$

$$
\Rightarrow \gamma_{0} \stackrel{\sim \gamma_{2}}{ }
$$

(b) Check $\gamma+(-\gamma) \sim 0$. $\quad \underset{\sim}{\sim}$ path in u
[c] If $\gamma_{0} \stackrel{\text { REP }}{\sim} \gamma_{1}$, let $\gamma=\gamma_{0}+\left(-\gamma_{1}\right)$ loop
$\Rightarrow \gamma \stackrel{u}{\sim} 0$. as loops. Indeed let

$$
\Gamma_{s}=\gamma_{s}+\left(-\gamma_{t}\right) .
$$

$$
\begin{aligned}
& \Gamma_{0}=\gamma . \text { By ba, } \Gamma_{1} \sim 0 . \\
& \text { By } \underline{a} \Rightarrow \gamma \stackrel{u}{\sim} 0 .
\end{aligned}
$$

Def U is simply connected if $\forall \gamma$ loop in U,

$$
\gamma \sim \sim^{u} 0 \Longleftrightarrow \pi_{1}(u)=0
$$

Example U is star convex $\Rightarrow U$ simply conneakd
Def u star convex if $F p_{0} . \in U$

Cauchy's Theorem (Homotopy version)
$f: u \rightarrow \sigma$ holomorphic, $\gamma_{0} \stackrel{u}{\sim} \gamma$, piecewise

$$
c^{\prime} \text { loops in } u \Rightarrow \int_{\gamma_{0}} f d z=\int_{\gamma_{1}} f d z
$$

Remarks $\Pi \quad \gamma \sim \int_{\gamma}^{u} f d z=\int_{0} f d z=0$.
If U simply connected $\Rightarrow \int_{\gamma} f d z=0 \forall \gamma c^{\prime}$ loop in u.
(G) γ_{0}, γ_{2} piecewise c^{\prime} paths, $\gamma_{0} \stackrel{\sim^{E P} \gamma_{2}}{ }$

$$
\Rightarrow \int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z \text {. In deed let } \gamma=\gamma_{1}+\left(-\gamma_{2}\right) \text {. }
$$

By II $\Rightarrow \int_{\gamma} f d z=0 \Rightarrow \int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z$.
\}, Conway IV. 6. 13
(III) $\left.\gamma_{0} \sim \sim^{u} \gamma_{1}, u \subseteq \mathbb{C}\right\}\{a\}$ piecewise c,
loops in $u \leq\left\{1\{a\} \Rightarrow \int_{\gamma_{0}} \frac{d z}{z-a}=\int_{\gamma_{1}} \frac{d z}{z-a}\right.$

$$
\Rightarrow n\left(\gamma_{0}, a\right)=n\left(\gamma_{1}, a\right) .
$$

This proves a previous assertion.

Remark the homotopy in Cauchy's theorem is not assumed to be c ?

Existence of primitives in simply connected sets

If U simply connoted, $f: U \rightarrow \mathbb{C}$ holomorphic
$\Rightarrow \int_{\gamma} f d z=0$. by Remark \sqrt{l}
\Rightarrow Prop A, f has a primitive
Corollary Any holomorphic function in a simply connected set admits a primitive. \& Conway N. 6.16

Take $f(z)=\frac{1}{z}$. A primitive is a branch of logarithm.

Corollary $z_{0} t U \subseteq \mathbb{C} \backslash$ job simply connected. We can define a branch of logarithm in U.

$$
\text { Us Conway IV. } 6.17
$$

Cauchy's Theorem (Homotopy version)
$f: u \rightarrow \sigma$ holomorphic, $\gamma_{0} \stackrel{u}{\sim} \gamma$. piecewise

$$
c^{\prime} \text { loops in } u \Rightarrow \int_{\gamma_{0}} f d z=\int_{\gamma_{1}} f d z
$$

Remark $W=$ prove a seemingly stronger result

Cauchy's Theorem ${ }^{+}$(Homotopy version).
$(t) f: U \longrightarrow \subset$ continuous, holomorphic in $U,\{a\}$
$\Rightarrow \int_{\gamma_{0}} f d z=\int_{\gamma_{1}} f d z$ if $\gamma_{0} \stackrel{u}{\sim} \gamma_{1}$ are piecewise c^{\prime} loops.

We need this stronger form to prove:

Cauchy's Integral Formula (CIE)
$f: u \rightarrow \sigma$ holomorphic, $\gamma \sim 0, a \in U \backslash\{r\}$

$$
n(r, a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

Remark This generalizes Local Cauchy's integral formula. we proved before. In that case, $\gamma=\partial \Delta$ where $\bar{\Delta} \subseteq U$.

Proof of CIF

$$
\text { Let } \quad(z)= \begin{cases}\frac{f(z)-\frac{f(a)}{2-a},}{}, z \neq a \\ f^{\prime}(a) & , z=a\end{cases}
$$

$\Rightarrow F$ continuous in U, holomorphic in $U,\{a\}$.

$$
\begin{aligned}
& \Longrightarrow \int_{\gamma} F d z=0 \quad \text { by Cauchy } t \\
& \Longrightarrow \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)-f(a)}{z-a} d z=0 \\
& \Longrightarrow \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{2-a}=f(a) \cdot \frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}=f(a) \cdot n(\gamma, a) .
\end{aligned}
$$

Remark
Homotopy Cauchy \Rightarrow CIT
V
Homotopy Cauchy
in fact $C I F \Rightarrow$ Homotopy Cauchy by using CIF
for $\gamma=\gamma_{0}+\left(-\gamma_{0}\right)$ \& the function $(z-a) f(z)$

Example $|a|<1 b \mid$. We compute

$$
\int_{|z|=r} \frac{e^{z}}{(2-a)(z-b)} d z
$$

[约 $r|a|$, the integrand is holomorphic so answer $=0$.
(6) $|a|<r<1 b \mid$. Write

$$
\int_{\mid z /=r} \frac{e^{2} /(z-b)^{2}}{z^{2}-a}=\left.2 \pi i \cdot \frac{e^{2}}{z-b}\right|_{z=a}=2 \pi i \cdot \frac{e^{a}}{a-b} .
$$

(b in $|a|<|b|<\sigma \quad$ Let $\gamma_{r}=\{|z|=r\}$.

$Z_{e}+f(z)=\frac{e^{2}}{(z-a)(z-b)}$.
z at γ_{a}, γ_{b} be two connotes centered at a, b and δ a segment joining them.

$$
\gamma_{0}+\gamma=\gamma_{a}+\delta+\gamma_{b}+(-\delta) \text {. }
$$

No fe $\gamma \sim \gamma_{r}$ in ब $\{a, b\}$.

By homotopy Cauohy

$$
\begin{aligned}
\int_{\gamma_{r}} f d z & =\int_{\gamma} f d z=\int_{\gamma_{a}} f d z+\int_{\gamma_{b}} f d z+\int_{\gamma_{a}} f d z+\int_{-\delta} f d z \\
& =\int_{z} \frac{e^{z} / 2-b}{z-a} d z+\int_{\gamma_{b}} \frac{e^{z} / 2-a}{z^{2}-b} d z \\
& =\left.2 \pi i \cdot \frac{e^{2}}{2-b}\right|_{z}=a \\
& =\left.2 \pi i \frac{e^{2}}{2-a}\right|_{z=b} \\
& =2 \pi i \cdot \frac{e^{a}-e^{b}}{a-b} .
\end{aligned}
$$

