

October 23, 2023

1. Last time

Cauchy's Theorem ${ }^{+}$(Homotopy version).
$(t) f: U \longrightarrow$ a continuous, holomorphic in $U \backslash\{a\}$
$\Rightarrow \int_{\gamma_{0}} f d z=\int_{\gamma_{1}} f d z$ if $\gamma_{0} \stackrel{u}{\sim} \gamma_{\text {, ane piece wise }} c^{\prime}$ loops.

We needed this stronger form to prove Homotopy Cauchy Integral formula:
last time
Cauchy's Integral Formula (CIF)
$f: u \rightarrow \sigma$ holomorphic, $\gamma \sim \sim \sim, a \in U \backslash\{r\}$

$$
n(r, a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

Proof of Homotopy Cauchy t C Conway IV.6.7.

Recall the assumption
$(t) f: U \longrightarrow \subset$ continuous, holomorphic in $U,\{a\}$
For the proof we only use
II f continuous
(IA) $\forall \Delta \subseteq u,\{\gamma\} \subseteq \Delta$ piecewise c^{\prime} loop

$$
\Rightarrow \int_{\gamma} f d z=0 \cdot(*)
$$

We have seen (t) implies (*) in Lecture 5, Corollary.', stake below:

Corollary_ $f: \Delta \rightarrow \varepsilon$ continuous, holomorphic in $\Delta \backslash\{a\}$

$$
\Rightarrow \int_{\gamma} f d z=0 \quad \forall \gamma \text { piece wise } c \text { loop }
$$

Let $h: I \times I \longrightarrow U$ be the homotopy fom γ_{0} to γ_{1}
Im h compact, $\subset \mid u$ clooed $\Longrightarrow \exists d>0$.

$$
\begin{equation*}
d=\operatorname{dist}(\operatorname{lm} h, \sigma, u) \tag{1}
\end{equation*}
$$

h continuous, IXI compaot $\Rightarrow h$ usiformly continuous $\Rightarrow \exists \delta>0$ such that

$$
\begin{equation*}
\left|s-s^{\prime}\right|<\delta, \quad\left|t-t^{\prime}\right|<\delta \Rightarrow\left|\mathscr{L}(v, t)-\mathscr{L}\left(s^{\prime}, t^{\prime}\right)\right|<d \tag{2}
\end{equation*}
$$

Let $\frac{1}{n}<\delta$ for $n \in \mathbb{Z}_{t}$. Subdivide I into n gqual $\left[\frac{i}{n}, \frac{i+1}{n}\right]$ of tongth $\frac{1}{n}<\delta$.

$\frac{c}{n} \frac{c+1}{n}$

Remarks
$\sqrt{11} \Delta_{i j} \leq U$ because of
the choice of d in (i) (11) $L\left(R_{i j}\right) \subseteq \Delta_{i j}$ because the sided of $R_{i j}$ have length $\frac{1}{n}<\delta$ and uniform continuity (2).

Claim (a) $\int_{\gamma_{0}} f d z=\int_{\pi_{0}} f d z \& \int_{\pi_{n}} f d z=\int_{\gamma_{1}} f d z$.

$z_{2}+l_{0}, l_{1} \ldots l_{n-1}$ be the edges of the polygon π_{0}.
$m_{0}, m_{1}, \ldots, m_{n-1}$ be the ares of the curve γ_{0}.

$$
\text { ice. } \quad m_{j}=\gamma_{0} /\left[\frac{0}{n}, \frac{v+1}{n}\right]
$$

Since $Q_{j+1,0} \in \Delta_{j 0} \subseteq U_{\text {兆 }}$, we must have l_{j}, m_{j} are in $\Delta_{j 0}$.
By (*) we have $\int_{j_{j}+\left(m_{j}\right)} f d z=0 \Rightarrow \int_{l_{j}} f d z=\int_{m_{j}} f d z$
Adding for all j, we find $\int_{\pi_{0}} f d z=\int_{\gamma_{0}} f d z$.

Claim (6) $\int_{\pi_{j}} f d z=\int_{\pi_{j+1}} f d z$

Let $s_{0}, \ldots S_{n-1}$ be the edges of π.

$$
\begin{aligned}
& \tilde{S}_{0}, \ldots \tilde{S}_{n-1} \text { the edges of } \pi_{j+1} \\
& t_{0,}, \ldots, t_{n-1} \text { the segments joining } Q_{i j+1} \text { to } Q_{i j .} .
\end{aligned}
$$

Since $h\left(R_{i j}\right) \subseteq \Delta_{i j} \Rightarrow \tilde{S}_{2}+t_{i+1}+\left(-s_{i}\right)+\left(-t_{i}\right)$ is a loop in $\Delta_{i j}$. \longrightarrow by 回 above

By (*) we find

$$
\begin{gathered}
\int f d z=0 \\
\tilde{s}_{i}+t_{i+1}+\left(-s_{i}\right)+\left(-t_{i}\right) \\
\Rightarrow \int_{\tilde{s}_{2}} f d z-\int_{s_{i}} f d z=\iint_{t_{2}} f d z-\int_{t_{i+1}} f d z
\end{gathered}
$$

Add these for all: We find

$$
\int_{\pi_{j}} f d z-\int_{\pi_{j+1}} f d z=0 \Rightarrow \text { Clam }[\underline{\mid}] .
$$

From Claims a \& [b.

$$
\int_{\gamma_{0}} f d z=\int_{\pi_{0}} f d z=\cdots=\int_{\pi_{n}} f d z=\int_{\gamma_{0}} f d z
$$

II. Taylor Expansion \& Conway N. 2.8

Theorem $f: U \rightarrow \mathbb{C}$ holomorphic, a $\in U, \Delta(a, R) \subseteq U$.

Then in $\Delta(a, R)$, we have

$$
f(z)=\sum_{k=0}^{\infty} a_{k}(z-a)^{k} \quad(x)
$$

for some $a_{k} \in \mathbb{C}$.
$\Longrightarrow f$ analytic $\Rightarrow f$ is ∞. many times differentiable.
ANALYTIC = HOLOMORPHIC = DIFFERENTIABLE

Proof Jot $\Delta(a, R) \leq U$. We piok ordeR. Jet

$$
\begin{aligned}
& Z \in \Delta(a, r) \text { By } \quad \text { IF } \\
& f(z)=\frac{1}{2 \pi i} \int_{|t-a|=r} \frac{f(t)}{t-2} d t
\end{aligned}
$$

$$
\text { Key: } \frac{1}{t-z}=\frac{1}{t-a-(z-a)}=\frac{1}{t-a} \cdot \frac{1}{1-\frac{2-a}{t-a}}
$$

$$
\begin{gathered}
=\frac{1}{t-a} \sum_{k=0}^{\infty} \frac{(2-a)^{k}}{(t-a)^{k}} \text { converges since }\left|\frac{z-a}{t-a}\right|=\frac{|z-a|}{r}<1 . \\
\Rightarrow \frac{f(t)}{t-2^{2}}=\sum_{k=0}^{\infty} f(t) \cdot \frac{(z-a)^{k}}{(t-a)^{k+1}} \cdot(t)
\end{gathered}
$$

Claim (t) converges uniformly int over $|t-a|=r$.

Indeed, let $f_{k}(t)=f(t) \cdot \frac{(z-a)^{k}}{(t-a)^{k+1}} \cdot \mathcal{Z}_{z} t|f(t)| \leq M$
for $|t-a|=r \Rightarrow\left|f_{k}(t)\right| \leq M 1 \cdot \frac{\left|2^{2}-a\right|^{k}}{r^{k+1}}=M_{k}$
Note $\sum M_{k}<\infty$ since $\mid z-a /<r$. Thus the claim follows
by Weicrokap m-test
Since the convergence is uniform, we can integrate

$$
\begin{aligned}
\Rightarrow f(z)= & \frac{1}{2 \pi i} \int^{1 t-a /=-} \frac{f(t)}{t-z} d t \stackrel{(t)}{=} \\
= & \sum_{k=0}^{\infty} \frac{1}{2 \pi i} \int_{(t-a)=r} \frac{f(t)}{(t-a)^{k+1}} d t \cdot(z-a)^{k} \\
& =\sum_{k=0}^{\infty} a_{k}(z-a)^{k} .
\end{aligned}
$$

Not that

$$
a_{k}=\frac{1}{2 \pi i} \int \frac{f(t)}{(t-a)^{k+1}} d t \quad \text { docs not depend on } r \text {. }
$$

Indeed, this follows by Homotopy Cauchy

$$
\int_{\gamma_{r}} \frac{f(t)}{(t-a)^{k+1}} d t=\int_{\gamma_{r},} \frac{f(t)}{(t-a)^{k+1}} d t
$$

since $\gamma_{r} \sim \gamma_{r}$, in a region $V=\left\{r-\varepsilon\langle | z-a \mid\left\langle r^{\prime}+\varepsilon\right\} \subseteq U\right.$

Remark In the proof, 2 was fixed and we showed

$$
f(z)=\sum_{k} a_{k}(z-a)^{k} \text { pointwise. in } \Delta(a, k) \text {. }
$$

However, after the fart, we mot alow have local uniform convergence using the results on power series in Lecture 2 .

Remark $f: u \rightarrow \mathbb{C}, \bar{\Delta}(a, r) \subseteq u$.

$$
\begin{aligned}
& a_{k}=\frac{f^{(k)}(a)}{k!}=\frac{1}{2 \pi i} \int \frac{f(t)}{(t-a)^{k+1}} d t \\
& z_{\text {cLoture }} 2
\end{aligned}
$$

from the proof of the theorem.

Theorem $f: u \longrightarrow \subset$ holomorphic, $\bar{\Delta}(a, r) \subseteq u$. Then

$$
\begin{array}{r}
f^{(k)}(a)=\frac{k!}{2 \pi i} \int_{(t-a \mid=r} \frac{f(t)}{(t-a)^{k+1}} d t . \\
\} \\
\text { positively onented }
\end{array}
$$

We will show that a similar formula holds at all points of a disc, not only the center.

Cauchy's Estimates no Conway IV.2.14
Lot $f: u \rightarrow \mathbb{C}$ holomorphic, $\bar{\Delta}(a, R) \subseteq U$. Jet

$$
\begin{aligned}
M_{R}= & \sup |f(z)| \\
& |z-a|=R .
\end{aligned}
$$

Then $/ f^{(k)}(a) \left\lvert\, \leq k^{\prime} \frac{M_{k}}{R^{k}}\right.$.

Remark $k=0$:

$$
\begin{aligned}
|f(a)| \leq & \sup _{z \in \partial \Delta(a, R)}|f(z)|
\end{aligned}
$$

Proof By CIF for derivatives

$$
\begin{aligned}
\left|f^{(k)}(a)\right| & =/ \frac{k!}{2 \pi \dot{j}} \int_{|z-a|=R} \frac{f(z)}{(z-a)^{k+1}} d z / \\
& \leq \frac{k!}{2 \pi} \cdot \frac{M_{R}}{R^{k+1}} \cdot \text { length }|z-a|=R \\
& =\frac{k!}{2 \pi} \cdot \frac{M_{R}}{R^{k+1}} \cdot 2 \pi R=k!\frac{M_{R}}{R^{k}} .
\end{aligned}
$$

