$$
\frac{\text { Math } 220 \mathrm{~A}-\text { lecture } 8}{\text { October } 25,2023}
$$

Last time

Theorem $f: u \longrightarrow \subset$ holomophic, $\Delta(a, r) \leq U$. Then

$$
\begin{gathered}
f^{(k)}(a)=\frac{k!}{2 \pi i} \int_{|t-a|=r} \frac{f(t)}{(t-a)^{k+1}} d t . \\
\text { } / / \quad \begin{array}{c}
\text { positively ononted }
\end{array}
\end{gathered}
$$

Cauchy's Estimates no Conway IV. 2.14
Lot $f: u \rightarrow \mathbb{C}$ holomorphic, $\bar{\Sigma}(a, R) \subseteq U$. Jat

$$
M_{R}=\sup _{|z-a|=R .}|f(z)|
$$

Then $\left.\mid f^{(k)}!a\right) \left\lvert\, \leq k!\frac{M_{k}}{R^{k}}\right.$.

Improve the theorem?
We next show that a similar formula holds at all
points of a disc, not only the center. \& also for more general loops.

Homotopy Caceohy Integral Formula for denvatives

$$
\begin{gathered}
f: u \rightarrow \mathbb{C} \text { holomorphic, } \gamma \sim 0, a \in u \backslash\{\gamma\} . \\
n(\gamma, a) f^{(k)}(a)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(t)}{(t-a)^{k+1}} d t .
\end{gathered}
$$

Proof Use Homotopy Cauchy Integral Formula \& differentiate under the integral sign. (Problem 5, HWK 3).

In more detail,

$$
n(\gamma, a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(t)}{t-a} d t
$$

HWR3

$$
\begin{aligned}
\Rightarrow n(\gamma, a) f^{(k)}(a) & =\frac{1}{2 \pi,} \int_{\gamma} f(t) \cdot \frac{\partial^{k}}{\partial^{k} a} \cdot\left(\frac{1}{t-a}\right) d t \\
& =\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(t)}{(t-a)^{k+1}} d t
\end{aligned}
$$

Remark As a special case, we obtain

Theorem if $\Delta \subseteq U, a \in \Delta, f: U \longrightarrow \sigma$ holomorphic, then

$$
\begin{gathered}
f^{(k)}(a)=\frac{k!}{2 \pi i} \int_{\partial \Delta} \frac{f(t)}{(t-a)^{k+1}} d t .
\end{gathered}
$$

possibly not the center of Δ

$$
\text { Example } \int_{|z|=r} \frac{e^{2}}{(z-a)^{k}} d z \quad, r \neq|a|
$$

- If $|a|>r$ the answer is 0 because the integrand is
holomorphic
- If $r>\mid a l$, apply CIE for denvatives:

$$
\frac{1}{(k-,)!} \cdot 2 \pi i \cdot \partial^{(k-1)} e^{2} / q=a=\frac{e^{a}}{(k-1)!} \cdot 2 \pi i
$$

21 Entire functions

Definition A holomorphic $f: \subset \longrightarrow \mathbb{C}$ is said to be entire.

Remark f entire $\stackrel{\text { Taylor }}{\Rightarrow} f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \forall z \in \mathbb{C}$
Example $E^{2}, \sin z^{2}, \cos z^{2}$ are entire.

Liouville's theorem Conway IV.3.4

If $f: \sigma \longrightarrow \mathbb{C}$ entire \& bounded $\Rightarrow f$ constant.

Proof: Assume $|f(z)| \leq M \quad \forall z \in Q$.

Cauchy's eshmak for $k=1$. Take $\bar{\Delta}(a, R) \subseteq \sigma$.

$$
\left|f^{\prime}(a)\right| \leq \frac{M_{R}}{R} \leq \frac{M}{R} .
$$

Take $R \rightarrow \infty$.
Thus $f^{\prime}(a)=0 . \forall a \Rightarrow f$ constant.

JOURNAL
MATHEMATIQUES
pures et appliquees,
recubil mensuel
de memoires sur les diverses parties des mathematiques ;
q.axi

PAR JOSEPH LIOUVILLE,
Ancien Elève de l'Ecole Polytechnique, répetiteur d'A nall sse a cettce École.

TOME PREMIER. ANNEE 1836.

PARIS,
BACHELIER, IMPRIMEUR-LIBRAIRE
de l'école polytechnique, du bureau des loncitudes, ric.,
quat des augustias, $x^{*} 55$.
1835;

Joseph Ziouville
Journal de Liouville

$$
1809-1882
$$

Known for: Kiouville's theorem

Sturm-Ziouville theory
Kiouville numbers

Liouville function

Remark $\sin \neq \cos \neq$ are not bocended in \mathbb{C}.

Indeed,

$$
\cos (\pi i n)=\frac{e^{\pi n}+e^{-\pi n}}{2} \longrightarrow \infty, \text { as } n \rightarrow \infty
$$

Fundamental Theorem of Algebra Conway 111.3.5

Any non constant polynomial $f \in \mathbb{C}[2]$ has at least one complex root.

Poof: $w<06$ f monic

$$
f(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n}
$$

A ouse
f has no roots $\Rightarrow f(z) \neq 0 * z$.
$\mathcal{L} t g=\frac{1}{f} \Rightarrow g$ is entire. Wo show g bounded \Rightarrow
$\Rightarrow g$ constant. $\Rightarrow f$ constant. This is a contradiction.

We show g bounded. If IF $I=R$

$$
\begin{aligned}
|f(z)| & =\left|z^{n}+0_{1} 2^{n-1}+\ldots+a_{n}\right| \geq|z|^{n}-\sum_{k=1}^{n-1}\left|a_{k}\right||z|^{n-k} \\
& =R^{n}-\sum_{k=1}^{n-1}\left|a_{k}\right| R^{n-k} \rightarrow \infty \text { as } R \rightarrow \infty .
\end{aligned}
$$

If $R \geq R_{0} \Rightarrow|f(z)| \geq 1 \Rightarrow|g(z)| \leq 1$.
If $R \leq R_{0} \Rightarrow$ by continuity of $g: \quad \lg (z) \mid \leq K$.

$$
\rightarrow|g(z)| \leq m=\max (0, k) . \quad \forall 2 \text {, as claimed. }
$$

13) Zeros of holomorphic functions Conway IV. 3 .

$$
f: u \rightarrow \sigma \text { holomo } \boldsymbol{p}^{\text {hic }}, f \neq 0, u \text { open }+ \text { connected. }
$$

Def $\quad a \in U$ is a zero of order N if

$$
f(a)=0, \quad f^{\prime}(a)=0, \quad \ldots, f^{(x-1)}(a)=0, \quad f^{(w)}(a) \neq 0
$$

\Rightarrow Taylor expansion in $\Delta(a, R) \leq u$

$$
f(z)=\sum_{k \geq N} \frac{f^{(k)}(a)}{z!} \cdot(z-a)^{k} \cdot=(z-a)^{N} g(z) \quad(*)
$$

whore g is a power service converging in $\Delta(a, R)$.

$$
g(a)=\frac{f^{(N)}(a)}{N!} \neq 0
$$

We need to rule out the case $N=\infty$.

Conway IV. 3. 7 .
z emma $f: u \longrightarrow \mathbb{C}, u$ connoted. TFAE
$[1 \quad f \equiv 0$
[(4) $\exists a \in U, \quad f^{(k)}(a)=0 \quad \forall k$
[it) $S=\{z: f(z)=0\}$ has a limit point in U.

Proof [盾 \Rightarrow 后 \Rightarrow are clear.
([a) \Rightarrow Lot a be a limit point for $s, a \in U$.
clearly $f(a)=0$. Lot us assume a has finite order N.

By $(x), f(z)=(z-a)^{n} g(z)$ in $\Delta(a, R)$ w th
g power sonnies, $g(a) \neq 0$. By continuity of $g, g(z) \neq 0$ in some $\Delta(a, r) \subseteq \Delta(a, R)$. Than

$$
\operatorname{Sn} \Delta(a, r)=\left\{z:(2-a)^{N} g(z)=0\right\}=\{a\} \text {. }
$$

contradiction. with a being a limit point.

Thus $N=\infty . \Rightarrow$.

$$
\text { [(c) } \Rightarrow \text { 田. } z_{0} t \quad \Delta=\left\{a: f^{(x)}(a)=0 \forall k\right\} \subseteq u \text {. }
$$

By ass umption $A \neq \Phi$. Wo show A is closed \& open.

Thus $A=u . \Rightarrow f \equiv 0$.

- A closed. Indeed $A=\prod_{k=0}^{\infty}\left(f^{(k)}\right)^{-1}(0)=$ closed.

Since $f^{(k)}$ is continuous $\Rightarrow f^{(k)^{-3}}(0)$ is closed $\Rightarrow A$ olooed

- A open. Jot $a \in A$. By Taylor if $\Delta(a, R) \leq U$,

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k}(z-a)^{k} .=0 \text { since } f^{(k)}(a)=0 \text {. }
$$

Since $f=0$ in $\Delta(a, R) \Rightarrow f^{(k)}=0$ in $\Delta(a, R) \Rightarrow$

$$
\Rightarrow \Delta(a, R) \subseteq A \Rightarrow A \text { open. }
$$

Identity Principle F Conway IV.3.8.
If fig: $u \rightarrow c$ holomorphic, u connected, and $5=\{2: f(z)=g(z)\}$ has a limit point in $u \Rightarrow f=g$.

Proof \mathcal{Z} t $L=f-g$. Apply the previous lemma.

Remarks
[1] The zeros of $f: u \rightarrow \sigma$ holomorphic cannot have a limit point in U.

Let $f(z)=\sin \frac{1+2}{1-z}$ holomorphic in $\mathbb{C},\{0\}:=u$

Zeros $\quad \frac{1+2}{1-2}=n \pi \Longleftrightarrow \quad z=\frac{-1+n \pi}{1+n \pi} \longrightarrow 1$.
Thus the $Z^{\text {eros }}$ can accumulate to ∂U.
[II This fails for c^{b} - functions

$$
f(x)= \begin{cases}0, & x=0 \\ e^{-\frac{1}{x^{2}}} \sin \frac{1}{x}, x \neq 0 .\end{cases}
$$

Check f is c^{∞}. Also f has z eros at $\frac{1}{n \pi} \longrightarrow 0$.
which has a limit point.

IIII If $f \cdot g: u \xrightarrow{\zeta} \mathbb{C}$ connected. and $\exists v \leq u$ open with $f=g$ in v, then $f \equiv g$ in u.
[iv] $f \neq 0$ has at moot countably many zoros. in U.

$$
\text { Zot } U=\bigcup_{n=1}^{\infty} K_{n} \text { wher } K_{n} \text { compaot. In eaok }
$$

compact set K_{n}. f can only have funitoly many zeros.
(indeed this is because zors (f) can't accumulate in K_{n})

$$
\Rightarrow Z_{\text {rro }}(f)=\bigcup_{n}(\underbrace{\text { (iro } f \text {) } n K_{n}}_{\text {finite }})=\text { courotable. }
$$

Aufgaben und Lehrsätze, erstere aufzulösen, letztere zu beweisen.
(Von Herrn N. H. Abel.)
49. Theorème. Si la somme de la série infinie

$$
a_{0}+a_{1} x+a_{4} x^{2}+a_{3} x^{3}+\ldots+a_{m} x^{m}+\ldots
$$

est égale à zéro pour toutes les valeurs de \boldsymbol{x} entre deux limites réelles α et β; on aura nécessairement

$$
a_{0}=0, a_{2}=0, a_{2}=0 \ldots a_{m}=0 \ldots \ldots
$$

en vertu de ce que la somme de la série s'évanouira pour une valeur quelconque de x.

Identity theorm: Crelle's Journal 1827, page 286

Main theorems 11 Identity Principle - see above
(II) Open Mapping Theorem (OMT)

LimIt Maximum Modulus Primaiple (MMP)

Recall: $f: x \longrightarrow \gamma$ is open map if $\forall u \leq x$ open.
$f(u)$ is open.

- $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longrightarrow x^{2}$ is not open, $u=(-1,0), f(u)=[0,0)$
- $f: \mathbb{C} \longrightarrow \mathbb{C}, z \longrightarrow \mathfrak{z}^{2}$ is open. This is because:

Conway IV. 7.5

Theorem (Open Mapping Tho).
$f: U \longrightarrow \Phi$ not constant holomorphic $\Rightarrow f$ is open.

Theorem (Maximum Modulus) \& Conway IV. 3. II
$f: u \rightarrow 匹$ holomorphic, non constant. then if cannot have a local maximum. in u.

Remark if u bounded, $f: \bar{u} \rightarrow \tau$ continuous,
f holomorphic in U, then

$$
\max _{\bar{u}}|f|=\max _{\partial u}|f|
$$

Indeed, \bar{u} and ∂u are closed a bounded \Rightarrow compact.
Thus fl admits maxima over \bar{u} \& ∂u. The max of 'fl over \bar{u} cannot occur in u by MM P so it must occur on ∂U. The case $f=$ constant is also clear.

