Math 220A - Fall 2023 - Midterm

Name: \qquad

Student ID: \qquad

Instructions:

Please print your name and student ID.
You may use results proved in class without proof, unless the problem asks you to reprove such a result. Results which were not proved in class, e.g. Big Picard, are not allowed.

There are 5 questions which are worth 50 points. You have 80 minutes to complete the test.

Question	Score	Maximum
1		12
2		10
3		8
4		10
5		10
Total		50

Problem 1. [12 points; 4, 4, 4.]
Let

$$
f(z)=\frac{1}{(z-3)(z-2)}
$$

(i) Write down the Laurent expansion of f in the region $2<|z|<3$.
(ii) Construct an explicit primitive of f in the region

$$
U=\mathbb{C} \backslash\{x \in \mathbb{R}: 2 \leq x \leq 3\} .
$$

Don't forget to justify why your answer is well-defined.
(iii) Let

$$
U_{1}=\{z:|z|<2\}, \quad U_{2}=\{z: 2<|z|<3\}, \quad U_{3}=\{z:|z|>3\} .
$$

In which of these regions does f admit a primitive? Please justify your answer.

Problem 2. [10 points; 4, 6.]
(i) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be entire. Assume that there exist constants $C, R>0$ such that

$$
|f(z)| \leq C|z|^{d}
$$

for all $|z| \geq R$. Show that f is a polynomial.
(ii) Let p, q be polynomials, and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be entire such that

$$
f(z)^{3}+p(z) f(z)+q(z)=0 .
$$

Show that f is a polynomial.

Problem 3. [8 points.]
Consider $f: \Delta(0,1) \rightarrow \mathbb{C}$ holomorphic and nonconstant, and define $M(r)=\max _{|z|=r} \operatorname{Re} f(z)$ for $0 \leq r<1$. Show that $M:[0,1) \rightarrow \mathbb{R}$ is strictly increasing.

Problem 4. [10 points.]
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be entire. Assume that the function $g(z)=f(z) \cdot f\left(\frac{1}{z}\right)$ is bounded on $\mathbb{C} \backslash\{0\}$. Show that $f(z)=c z^{m}$ for some constant c and $m \geq 0$.

Problem 5. [10 points.]
Let $U \subset \mathbb{C}$ be an open connected set, and let $f, g: U \rightarrow \mathbb{C}$ be holomorphic functions with $|f(z)|=|g(z)|$ for all $z \in U$. Show that $f=a g$ for some $a \in \mathbb{C}$ with $|a|=1$.

