Math 220C, Problem Set 4. Due Friday, May 1.

1. Let \(f, g \) be two entire functions of finite order \(\lambda \). Assume \(f(a_n) = g(a_n) \) for a sequence \(\{a_n\}_{n \geq 0} \) with
\[
\sum_{n=0}^{\infty} \frac{1}{|a_n|^{\lambda+1}} = \infty.
\]
Show that \(f = g \).

2. (i) Find all entire functions \(f \) of finite order such that \(f(\log n) = n \) for all integers \(n \geq 1 \).

(ii) Give an example of an entire function \(f \) with zeroes only at \(\log n \) for integers \(n \geq 1 \).

3. Let \(f(z) = \sum_{n=0}^{\infty} c_n z^n \) be an entire function of order \(\lambda \). Let
\[
\mu = \limsup_{n \to \infty} \frac{n \log n}{-\log |c_n|} > 0.
\]
Show that \(\lambda = \mu \).

(i) First show that \(\lambda \geq \mu \) by showing that for all \(\epsilon > 0 \) we have \(\lambda > \mu - \epsilon \).

Hint: By definition
\[
n \log n \geq -(\mu - \epsilon) \log |c_n|
\]
for infinitely many \(n \). Use Cauchy’s estimate for \(|c_n| \) to conclude that
\[
\log M(R) \geq n \log R - \frac{1}{\mu - \epsilon} n \log n
\]
for all \(R \). Use this for
\[
R = (en)^{\frac{1}{\mu - \epsilon}} \implies \log M(R) \geq \frac{n}{\mu - \epsilon} = \frac{R^{\mu - \epsilon}}{e(\mu - \epsilon)}.
\]
Conclude that \(\lambda \geq \mu - \epsilon \).

(ii) Conversely, show that \(\lambda \leq \mu \) by showing that \(\lambda < \mu + \epsilon \) for all \(\epsilon > 0 \).

Hint: If \(n \) is sufficiently large, \(|c_n| \leq n^{-\frac{n}{\mu+\epsilon}} \). Conclude that
\[
M(R) \leq \sum_{n} R^n n^{-\frac{n}{\mu+\epsilon}}.
\]
To estimate this series, break the sum into two pieces \(S_1, S_2 \) corresponding to
\(n < (2R)^{\mu+\epsilon} \) and \(n \geq (2R)^{\mu+\epsilon} \). Show
\[
S_2 = \sum_{n > (2R)^{\mu+\epsilon}} R^n n^{-\frac{n}{\mu+\epsilon}} < 1.
\]
Show
\[S_1 = \sum_{n \leq (2R)^{\mu+\epsilon}} R^n n^{-\frac{n}{\mu+\epsilon}} \leq R^{(2R)^{\mu+\epsilon}} \sum_{n \geq 1} n^{-\frac{n}{\mu+\epsilon}} \leq CR^{(2R)^{\mu+\epsilon}}. \]

Conclude.

4. Let \(a > 0 \). Show that the function
\[f(z) = \sum_n z^n a_n \]
is entire and find its order.

5. If \(f \) is an entire function of finite order \(\lambda \), show that \(f' \) also has order \(\lambda \).

6. Let \(f(z) = \prod_{n=1}^{\infty} (1 - a^n z) \) for \(|a| < 1 \). Show that \(f \) has order 0.

Hint: Fix \(\epsilon > 0 \). Two estimates are needed:
\[\log |1 - w| \leq C, \text{ for } |w| \geq 1/2 \]
and
\[\log |1 - w| \leq C|w|^{\epsilon}, \text{ for } |w| \leq 1/2. \]