Solutions: Homework 1

Problem 1. Show that the function $u : \mathbb{C} \setminus \{0\} \to \mathbb{R}$ given by

$$u(z) = \log |z|$$

is harmonic, but it is not the real part of a holomorphic function in $\mathbb{C} \setminus \{0\}$.

Proof. For $(x, y) \neq (0, 0)$, we have $u(x + iy) = \frac{1}{2} \log(x^2 + y^2)$. Then

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

and

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

Then

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

and hence u is harmonic.

Now, suppose that there exists $v : \mathbb{C} \setminus \{0\} \to \mathbb{R}$ such that $f = u + iv$ is analytic on $\mathbb{C} \setminus \{0\}$. Let $U = \mathbb{C} \setminus \{z : \text{Re } z \leq 0\}$ and let Log denote the principal branch of the logarithm. Then $\text{Re}(f|_U - \text{Log}) = 0$, hence $f|_U - \text{Log}$ has image contained in the imaginary line. By the Open Mapping Theorem, we must have that $f|_U - \text{Log}$ is constant. This implies that Log has a continuous extension to $\mathbb{C} \setminus \{0\}$. This is a contradiction, completing the proof.

Problem 2. Let $G \subset \mathbb{C}$ be a symmetric region with respect to the real axis, and let

$$G^+ = G \cap \{\text{Im } z > 0\}$$

be the part in the upper half plane. Moreover, assume that u is harmonic on G^+ and that

$$\lim_{z \to z_0} u(z) = 0$$

for any point $z_0 \in G \cap \mathbb{R}$. Show that u extends to a harmonic function on G, and the extension satisfies

$$u(\overline{z}) = -u(z).$$
Proof. Extend \(u \) to \(G \) by defining \(u(z) = 0 \) for \(z \in G \cap \mathbb{R} \) and \(u(z) = -u(z) \) for \(z \in G^- \). Clearly \(u \) is continuous on \(G \).

We claim \(u \) is harmonic. Clearly \(u \) is harmonic in \(G^+ \). Furthermore, \(u \) is harmonic on \(G^- \) because for any \((x_0, y_0) \in G^- \) we have
\[
\begin{align*}
 u_x(x_0, y_0) &= -u_x(x_0, -y_0),
 u_y(x_0, y_0) = u_y(x_0, -y_0),
 u_{xx}(x_0, y_0) &= -u_{xx}(x_0, -y_0),
 u_{yy}(x_0, y_0) = -u_{yy}(x_0, -y_0)
\end{align*}
\]
and thus
\[
u_{xx} + u_{yy} = 0\]
on \(G^- \) from the Laplace equation in \(G^+ \). Finally, let \(\alpha \in G \cap \mathbb{R} \). Let \(0 < r < R \). Then
\[
\frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta})d\theta = \frac{1}{2\pi} \int_0^{\pi} u(a + re^{i\theta})d\theta + \frac{1}{2\pi} \int_{\pi}^{2\pi} u(a + re^{i\theta})d\theta
\]
\[
= \frac{1}{2\pi} \int_0^{\pi} u(a + re^{i\theta})d\theta - \frac{1}{2\pi} \int_{\pi}^{2\pi} u(a + re^{-i\theta})d\theta = 0 = u(a).
\]
By the Mean Value Property, \(u \) is harmonic around any point on \(G \cap \mathbb{R} \), hence harmonic in \(G \).

\[\square\]

Problem 3. Let \(u : G \to \mathbb{R} \) be a nonconstant harmonic function in a region \(G \subset \mathbb{C} \). Show that \(u \) is an open map.

Proof. Since open sets are unions of open balls, it suffices to check that images of open balls are open. Let \(\Delta(a, r) \subset G \). Since \(\Delta(a, r) \) is simply connected, there exists \(v : \Delta(a, r) \to \mathbb{R} \) such that \(f = u + iv \) defined on \(\Delta(a, r) \) is analytic. Since \(f \) is analytic, \(f(\Delta(a, r)) \) is open in \(\mathbb{C} \). Note that \(\operatorname{Re} : \mathbb{C} \to \mathbb{R} \) given by \(\operatorname{Re}(x + iy) = x \) is an open map. Note that \(u(\Delta(a, r)) = \operatorname{Re}(f(\Delta(a, r))) \), and hence is open. So \(u \) is an open map. \(\square \)

Problem 4. Show that if \(u : \mathbb{R}^2 \to \mathbb{R} \) is harmonic and \(u(z) \geq 0 \) then \(u \) is constant.

Proof. Since \(\mathbb{C} \) is simply connected, there exists \(f \) entire such that \(\operatorname{Re} f = u \). Let \(g = e^{-f} \). Then \(g \) is also entire, and for all \(z \in \mathbb{C} \), \(|g(z)| = e^{-u(z)} \leq 1 \). By Liouville’s theorem, \(g \) is constant, and hence so is \(f \). This implies that \(u \) is constant. \(\square \)
Problem 5. Let $u : G \to \mathbb{R}$ be harmonic, and $\Delta(a, r) \subset G$. Let

$$M = \sup_{|z-a|=r} |u(z)|.$$

(i) Show that

$$u(a) = \frac{1}{\pi r^2} \int \int_{\Delta(a, r)} u(x, y) dxdy.$$

(ii) Show that the derivatives u_x and u_y are also harmonic. Therefore

$$u_x(a) = \frac{1}{\pi r^2} \int \int_{\Delta(a, r)} u_x(x, y) dxdy.$$

(iii) Use Green’s theorem in part (ii) and deduce that

$$|u_x(a)| \leq \frac{2}{r} M.$$

Derive the similar statement for u_y.

(iv) Using induction, show that for $i + j = n$ then the higher derivatives satisfy the estimates

$$|\partial^i_x \partial^j_y u(a)| \leq C_n r^{-n} M$$

for some constant C_n.

(v) Show that if $u : \mathbb{R}^2 \to \mathbb{R}$ is harmonic and $|u(z)| \leq A(1 + |z|^m)$ then u is a polynomial.

Proof. (i) Changing into polar coordinates, we have

$$\frac{1}{\pi r^2} \int \int_{\Delta(a, r)} u(x + iy) dxdy = \frac{1}{\pi r^2} \int_0^r \int_0^{2\pi} u(a + \rho e^{i\theta}) \rho d\theta d\rho$$

Since u is harmonic, for any $0 < \rho < r$, we have

$$\int_0^{2\pi} u(a + \rho e^{i\theta}) d\theta = 2\pi u(a)$$

Hence we have

$$\frac{1}{\pi r^2} \int \int_{\Delta(a, r)} u(x + iy) dxdy = \frac{2u(a)}{r^2} \int_0^r \rho d\rho = u(a)$$

(ii) Since u is harmonic, u is infinitely differentiable. So,

$$(u_x)_{yy} = (u_{yy})_x = (-u_{xx})_x = -(u_x)_{xx}.$$
Hence
\[
(u_x)_{xx} + (u_x)_{yy} = 0
\]
and \(u_x\) is therefore harmonic. Similarly, \(u_y\) is also harmonic. So, by part (i)
\[
u_x(a) = \frac{1}{\pi r^2} \int \int_{\Delta(a,r)} u_x(x,y) \, dx \, dy
\]
(iii) By Green’s theorem, we have
\[
u_x(a) = \frac{1}{\pi r^2} \int \int_{\Delta(a,r)} u_x(x,y) \, dx \, dy = \frac{1}{\pi r^2} \int_{\partial \Delta(a,r)} u(x,y) \, dy
\]
Then, changing \(x\) to \(\text{Re}(a) + r \cos \theta\) and \(y\) to \(\text{Im}(a) + r \sin \theta\), we have
\[
u_x(a) = \frac{1}{\pi r^2} \int_0^{2\pi} u(a + re^{i\theta}) r \cos \theta d\theta = \frac{1}{\pi r} \int_0^{2\pi} u(a + re^{i\theta}) \cos \theta d\theta
\]
Hence, we have
\[
|\nu_x(a)| \leq \frac{M}{\pi r} \int_0^{2\pi} |\cos \theta| d\theta = \frac{4M}{\pi r} \leq \frac{2rM}{r}.
\]
Similarly, we have
\[
u_y(a) = \frac{1}{\pi r^2} \int \int_{\Delta(a,r)} u_y(x,y) \, dx \, dy = -\frac{1}{\pi r^2} \int_{\partial \Delta(a,r)} u(x,y) \, dx
\]
Then, changing \(x\) to \(\text{Re}(a) + r \cos \theta\) and \(y\) to \(\text{Im}(a) + r \sin \theta\), we have
\[
u_y(a) = \frac{1}{\pi r^2} \int_0^{2\pi} u(a + re^{i\theta}) r \sin \theta d\theta = \frac{1}{\pi r} \int_0^{2\pi} u(a + re^{i\theta}) \sin \theta d\theta
\]
Hence, we have
\[
|\nu_y(a)| \leq \frac{M}{\pi r} \int_0^{2\pi} |\sin \theta| d\theta = \frac{4M}{\pi r} \leq \frac{2rM}{r}.
\]
(iv) We proceed by induction on \(n\). It is true for \(n = 1\) with \(C_1 = 2\). Assume that the inequalities are true for \(n - 1\). Since \(u_{xx} = -u_{yy}\) on \(G\), if \(j\) is even, we have
\[
|\partial_x^j \partial_y^j u(a)| = |\partial_x^n u(a)|
\]
and if \(j\) is odd, we have
\[
|\partial_x^j \partial_y^j u(a)| = |\partial_x^{n-1} u_y(a)|.
\]
In either case, we have, by our induction hypothesis applied to \(r/2 \) instead of \(r \):
\[
|\partial^i_x \partial^j_y u(a)| = |\partial^{n-1}_x v(a)| \leq \frac{C_{n-1}}{(r/2)^{n-1}} \sup_{|z-a|=r/2} |v(z)|
\]
where \(v = u_x \) if \(j \) is even and \(= u_y \) if \(j \) is odd. In either case, by (iii) above, we have for any \(z_0 \in \partial \Delta(a, r/2) \),
\[
|v(z_0)| \leq \frac{2}{r/2} \sup_{|z-z_0|=r/2} |u(z)|
\]
Since for any \(z_0 \in \partial \Delta(a, r/2) \), we have \(\partial \Delta(z_0, r/2) \subset \Delta(a, r) \), by the Maximum principle, we obtain that
\[
|v(z_0)| \leq \frac{4M}{r}
\]
and hence
\[
\sup_{|z-a|=r/2} |v(z)| \leq \frac{4M}{r}.
\]
Putting this back into the first inequality above, we get
\[
|\partial^i_x \partial^j_y u(a)| \leq \frac{2^{n+1}C_{n-1}}{r^n} M
\]
Putting \(C_n = 2^{n+1}C_{n-1} \), we are done.

(v) Let \(a \in \mathbb{R}^2 \). For any \(r > 0 \), we have
\[
\sup_{|z-a|=r} |u(z)| \leq A(1 + (|a| + r)^m)
\]
So, by part (iv) above, we have for \(i + j > m \),
\[
|\partial^i_x \partial^j_y u(0)| \leq \frac{AC_n}{r^{i+j}} (1 + (|a| + r)^m)
\]
Letting \(r \to \infty \), we have
\[
\partial^i_x \partial^j_y u(a) = 0
\]
for all \(a \in \mathbb{R}^2 \), whenever \(i + j > m \). In particular,
\[
\partial^{m+1}_x u \equiv 0.
\]
This implies that
\[
u = x^m f_m(y) + x^{m-1} f_{m-1}(y) + \ldots + f_0(y)
\]
for some f_i's from $\mathbb{R} \to \mathbb{R}$. Similarly, $\partial_y^{m+1} u \equiv 0$ and hence the f_i's are polynomials in y of degree $\leq m$. This shows that u is a polynomial.

\[\square \]

Problem 6. If $u : \mathbb{R}^2 \to \mathbb{R}$ is bounded and harmonic then u is constant.

Proof. Let M be such that $u(z) \leq M$ for all $z \in \mathbb{C}$. Then $v := M - u$ is also harmonic. By Problem 4, v, and hence u, is constant. \[\square \]

Problem 7. Show that if $u : \Delta(0,1) \setminus \{0\} \to \mathbb{R}$ is harmonic and $\lim_{z \to 0} u(z)$ exists, then u can be extended to a harmonic function on Δ.

Proof. Suppose $u : \Delta(0,1) \setminus \{0\} \to \mathbb{R}$ is harmonic. Then

$$\int_0^{2\pi} u(re^{it}) dt = a \log r + b$$

for some constants a, b and for $0 < r < 1$. For a proof of this, see Theorem 3.6, VIII, Section 3 (Pg. 263) in “Complex Analysis”, Fourth Edition by S. Lang. Extend u to $\Delta(0,1)$ by defining $u(0) = \lim_{z \to 0} u(z)$. Then u is continuous on $\Delta(0,1)$. For $\epsilon > 0$ arbitrary, there exists $r_\epsilon > 0$ such that $|u(z) - u(0)| \leq \epsilon$ for all $|z| < r_\epsilon$. Then,

$$|a \log r + b - 2\pi u(0)| = \left| \int_0^{2\pi} (u(re^{it}) - u(0)) dt \right| \leq 2\pi \epsilon$$

for all $0 < r < r_\epsilon$. This can happen only if $a = 0$ and $b = 2\pi u(0)$. So we have

$$u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{it}) dt$$

for all $r > 0$. Hence, u is harmonic on Δ. \[\square \]