
For this problem set, you may assume both Little and Great Picard.

1. If h is meromorphic in \mathbb{C}, and omits three values then h is constant.

 Hint: If h omits a, b, c, what values does $\frac{1}{h-a}$ omit?

2. Let $n \geq 3$. If f, g are entire such that $f^n + g^n = 1$, show that f, g are constant.

 Hint: Find n values that f/g omits.

3. Let f, g be two nonconstant entire functions, P, Q two nonconstant polynomials such that

 $$e^f + P = e^g + Q.$$

 Show that $P = Q$.

 Hint: Consider $P - Q = e^g(1 - e^{f-g})$ and examine $1 - e^{f-g}$.

4. If h is a nonconstant polynomial and f is a nonconstant entire function, show that he^f does not omit any values.

5. Let f be entire such that $f \circ f$ has no fixed points. Show that $f(z) = z + a$ for some a.

 Hint: Let $g(z) = \frac{f(f(z)) - z}{f(z) - z}$. Show that g omits the values 0 and 1, hence it is constant.

 Taking derivatives in $f(f(z)) - z = c(f(z) - z)$, show that $f' \circ f$ omits two values. Show f' is constant and conclude.