

$$
\text { April 14, } 2021
$$

Let G be bounded and assume each $a \in \partial G$ is
a barrier. Z at $f: \partial Q \rightarrow \mathbb{R}$ be continuous.

Theorem The Perron function u for (G, f) satisfies

$$
\lim _{z \rightarrow a} u(z)=f(a)
$$

Corollary The Perron function solve o the Dirichlet Problem under the above assumptions.
$W=$ lot w be a barrier at a. Thus

- $\omega: \bar{G} \longrightarrow \mathbb{R}, \omega$ cont in \bar{G}, w harmonic in \bar{G}
- $\omega(a)=0, \omega>0$ in $\partial G \backslash\{a\}$.

Proof $w<06 f(a)=0$. Z ot $\varepsilon>0$. We show
$11 \lim _{z^{2} \rightarrow a} \sup u(z) \leq \varepsilon$
(a) $\lim _{z \rightarrow a} \operatorname{mf} u(z) \geq-\varepsilon$

Then $\lim _{2 \rightarrow a} u(z)=0=f(a)$, as needed.

Let Δ be a disc with

Since $\overline{6}, \Delta$ is compact, $l=t$

$$
\omega_{0}=\min _{\bar{G}, \Delta} \omega>0
$$

Why? By Minimum Principle, $=$ ether $\omega \equiv 0$ in 6 coot tue as $\omega / a r \neq 0$) or $=$ for $\omega>0$ in 6 . But $\omega>0$ in ari\}aj. Thus

Proof of LII
$\mathcal{L}_{0} t V(z)=-\varepsilon-\frac{\omega(z)}{\omega_{0}} \cdot M$. $\quad V$ harmonic in G.
cont in $\bar{\sigma}$

Claim 1 $V \leq f$ over as

Proof $Z_{t}+2 \in 26$.

$$
\geq 0 \text { on } 06
$$

Claim $^{2} \quad V \in \mathcal{P}(G, f)$.
Proof W k know V harmonic. For $\xi \in 2 G$,

$$
\lim _{z \rightarrow \xi} V(z)=V(\xi) \leq f(\xi) \text { by (lam). }
$$

Since u is olefined as a supremum over $\mathcal{P}(G, f) \& V \in P(C, f)$

$$
\begin{aligned}
& \Rightarrow u(z) \geq v(z) \quad z \in \varepsilon \\
& \Rightarrow \quad \liminf _{z \rightarrow a} u(z) \geq v(a)=-\varepsilon \text { as needed. } \\
& h \sim w(a)=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { U } \\
& 1 \text { (0) } \\
& \text { - } z \in \partial \subset \cap \Delta: \quad V(z) \leq-\varepsilon<f(z)
\end{aligned}
$$

Proof of n $Z_{\text {I }}$

$$
W(z)=\varepsilon+\frac{w(z)}{w_{0}} \cdot M=\text { harmonic in } \varepsilon \text {, cont. in } \bar{G} \text {. }
$$

Claim ${ }^{\prime} W \geq f$ over ∂G.

$$
\omega \geq 0 \text { in } a s
$$

$$
L
$$

(1)

$$
\text { Proof } . z \in \partial \in \cap \Delta, W(z) \geq \varepsilon>f(z)
$$

(2)

$$
\text { - } \begin{array}{r}
2 \in \partial 6 \backslash \Delta, \quad W(z)>M \geq f(z) \\
\underset{\omega}{\leq} \geq \omega_{0} \text { in } \bar{\epsilon} \backslash \Delta
\end{array}
$$

We do not know $W \in \mathcal{P}$, but we can compare W to any $\varphi \in \mathcal{P}$

$$
\text { Claim } 2^{\prime} W(z) \geq \varphi(z) \forall \varphi \in \mathcal{P} \forall z \in G \text {. }
$$

Proof $Z=t \quad \xi \in 26$. Then
function $\varphi-W$.

$$
\begin{aligned}
& \checkmark \text { definition clarmil } \\
& \limsup _{z \rightarrow \xi} \varphi(z) \leq f(\xi)<w(\xi)=\lim _{z \rightarrow \xi} w(z) \\
& \Rightarrow \varphi(z) \leq W(z) \forall z \in G \text { by opt applied to the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } u(z)=\sup \{\varphi(z): \varphi \in \mathcal{P}\} \Rightarrow u(z) \leq W(z) \text { by } \\
& \text { Clams } \quad \forall z \in 6 . \text { Then } \\
& \quad \limsup u(z) \leq \lim _{z \rightarrow a} W(z)=W(a)=\varepsilon \text {, as needed. } \\
& \text { z } W \rightarrow a
\end{aligned}
$$

