$$
\text { Math } 220 \mathrm{C} \text { - Zeoture } 10
$$

$$
\text { April 19, } 2021
$$

So. Last time $f: ब \rightarrow \sigma$ entire function

Main Question Establish relationship between

$$
\text { \{Growth of } f] \longleftrightarrow \text { \{Distributions of zeros\} }
$$

Sub question: How do we interpert the two sides mathematically?
S1. Left hand side

Order $R_{\text {call }} M(R)=\sup _{|2|=R}|f(2)|$ \& we defined

$$
\begin{aligned}
& \lambda(f)=\limsup _{R \rightarrow \infty} \frac{\log \log M(R)}{\log R} \\
& \text { Intuitively, } f(z) \sim e^{\left.(z)^{\lambda}\right]}
\end{aligned}
$$

Question Flow to prove a function f has order λ ?
We need to show two statements:

$$
\begin{aligned}
& \text { I] } \forall \varepsilon>0 \text { gr such that }|f(z)|<e^{|z|^{\lambda+\varepsilon}} \forall|8|>r \\
& \text { This shows } n(R)<e^{R^{2+2}} * R>R \& \\
& \lambda(f)=\limsup _{R \rightarrow \infty} \frac{\log \log M(R)}{\log R} \leq \lambda+\varepsilon \quad \forall \varepsilon \stackrel{\varepsilon \rightarrow 0}{\Rightarrow} \lambda(f) \leq \lambda
\end{aligned}
$$

(II) $\forall \varepsilon>0 \quad \exists z_{n} \rightarrow \infty$ with $\left|f\left(z_{n}\right)\right|>e^{\left|z_{n}\right|^{\lambda-\varepsilon}}$

$$
\begin{aligned}
& \text { This shows } \\
& \lambda(f)=\lim _{R \rightarrow \infty} \frac{\log \log M(R)}{\log R} \geq \limsup _{n \rightarrow \infty} \frac{\log \log \left(f\left(z_{n}\right)\right)}{\log \left(2_{n} 1\right.} \geq \lambda-\varepsilon \\
& \\
& \quad \underset{\varepsilon \rightarrow 0}{ } \quad \lambda(f) \geq \lambda .
\end{aligned}
$$

Properties
I $\lambda\left(z^{m}\right)=0, M(R)=R^{m} \Rightarrow \lambda=0$.
(II) $\lambda\left(e^{p}\right)=d=g E$ for $P=$ polynomial (check)
[(II) $\lambda(f g) \leq \max (\lambda(f), \lambda(g)) \quad(f(\omega K 4)$

S2. Right hand side 4 Distribution (growth) of zeroes

Assume f has zeroes at

$$
\left|a_{1}\right| \leq\left|a_{2}\right| \leq \ldots \leq\left|a_{n}\right| \leq \ldots, a_{n} \longrightarrow \infty, a_{n} \neq 0
$$

Several quantities attached to growth of zeroes:
(1) $\operatorname{rank}=p$

Tho smallest integer p sceoh that $\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|^{p+1}}<\infty$. If such a p doeen't exist, $p=\infty$.
(四 Critical $=x p$ anent $(H W K 4, \# 5)$
$\alpha=\inf \left\{t>0: \sum \frac{1}{\left|a_{n}\right|^{t}}<\infty\right\}$ may not be an integer.
By the homework

divergent series? convergent series

Thus by dofnition $p \leq \alpha \leq p+1$.
If $\alpha \notin \mathbb{Z}$ then α determines p uniquely.

UM $N(R)=\#$ zeroes in $\Delta(0, Q)$ with multiplicity

Fact * (we will not use /prove)

$$
\alpha=\limsup _{R \rightarrow \infty}-\log \frac{N(R)}{\log R}
$$

Example* $Z_{e}+a_{n}=n^{3} \cdot n>0$. Then

$$
N(R)=\#\left\{n: n^{3}<R\right\} \sim R^{1 / 3} \Rightarrow \frac{\log N(R)}{\log R} \rightarrow \frac{1}{3}
$$

Note

$$
\sum \frac{1}{n^{3 t}}<\infty \Longleftrightarrow 3 t>1 \Longleftrightarrow t>\frac{1}{3} \text { so } \alpha=\frac{1}{3}
$$

harmonic series

Upshot We have defined the following guartifieo
measuring growth $/$ distribution of z eros

$$
N(R), \alpha, p
$$

Note $N(R)$ determines α, α determines p if $\alpha \notin \mathbb{Z}$.

Best for as: p (or h to bo defined next).

Small variation - Genus of an entire function
let f has zeroes at $a_{1}, a_{2} \ldots, a_{n}, \ldots, a_{k} \neq 0$.
where $\left\{a_{n}\right\}$ has rank $p . \quad \Rightarrow \sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|} p_{n+1}<\infty$

Recall Wererstiap Factorization

$$
f(z)=z^{m} \varepsilon^{g(z)} \prod_{n=1}^{\infty} E_{p}\left(\frac{z}{a_{n}}\right) .
$$

Recall

$$
E_{p}(z)=\left\{\begin{array}{l}
1-z, p=0 \\
(1-z)=x p\left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{p}}{p}\right) \cdot p>0
\end{array}\right.
$$

Dr fine

$$
h=g \text { onus }(f)=\left\{\begin{array}{l}
\max (p, q) \text { if } g \text { polynomial of degree } q \\
\infty \quad \text { if } g \text { not polynomial or } p=\infty .
\end{array}\right.
$$

If the exponential e^{g} doern't appear then $t=p$. In general $p \leq h$.

Example (Math 220B)
$\sin z=z \prod_{n=1}^{\infty}\left(1-\frac{2^{2}}{n^{2} \pi^{2}}\right) \quad$ factorization of $\sin x$.

Re write this as

$$
\begin{aligned}
\sin z & =z \prod_{n=1}^{\infty}\left(1-\frac{2}{n \pi}\right) e^{2 / n \pi}\left(1+\frac{2}{n \pi}\right) e^{-z / n \pi} \\
& =2 \prod_{n=1}^{\infty} E_{1}\left(\frac{z}{n \pi}\right) E_{1}\left(-\frac{2^{2}}{n \pi}\right)
\end{aligned}
$$

$\Rightarrow g$ doesn't appear. Thus genus $h=p$.
The zeroes are at $n \pi, n \in \mathbb{Z}$. We want

$$
\begin{aligned}
& \sum_{n \neq 0} \frac{1}{\left.\ln \pi\right|^{r+1}}<\infty \Leftrightarrow p+1>1 \Leftrightarrow p>0 . ~ T h u s ~ t h e ~ \\
& \ddots \text { harmonic series }
\end{aligned}
$$

smallest p equals 1.

The genus of $2 \longrightarrow \sin ^{2}$ equals 1 .
§3. Revising the Main Question (now made precise)

Establish relatonotip between
\{Growth of f] \longleftrightarrow \{Growth of zeroes\}
measured by λ
measure by $h=$ genus.

Answer Theorem (Hadamard)

$$
h \leq \lambda \leq h+1
$$

Remarks 目 If $\lambda \notin \mathbb{Z}$ then λ determines h uniquely.
(ii) If e^{3} doean't appear then $h=p$ so in this case.

$$
p \leq \lambda \leq p+1
$$

(III) We have $p \leq h \leq \lambda$ so the order bounds the p in the Weiershap Factorization. Tho statement that we can take $p \leq \lambda$ is called Glad amend Factorization.

Conclusion 7 connections between

- $M(R)$ and λ by definition $\lambda=\limsup _{R \rightarrow \infty} \frac{\log \log m(R)}{\log R}$
- $N(R), \alpha, p$ as we saw above
- λ and $h=\max (\rho, 2)$ via Hadamand $h \leq \lambda \leq h+1$

Next - proof that $\lambda \leq h+1$

- proof that $h \leq 2$
- Applications

MHatamars
Jacques Hadamand (1865-1963)

Proved the Prime Number Theorem.

Adviser: Emile Picard.

Students: Maurice Fre'chet, Andre' Wail

