$$
\begin{gathered}
\text { Math } 220 \mathrm{C}-\text { Neot } \\
\text { April 26, } 2021
\end{gathered}
$$

(1) Flomework 6, available on Friday, due May 7

- last homework
(2) We drop the lowest home work
(3) Next 3 lectures - Zitfle Picard.

In Lecture "

Application A (Conway $\times 1.3 .6$)
f entire \& not constant \& finite order
$\Rightarrow f$ omits at moot one value.

$$
\text { Today - Picard's Theorems - Conway } x \text { II }
$$

Little Picard
$f: \sigma \longrightarrow \sigma$ entire, non constant $\Rightarrow f$ omits at most one value.

For example, $f(2)=r^{2}$ only omits the value 0 .

Little Picard is a generalization of

Ziouville's Theorem $f: \sigma \rightarrow \sigma$ entire, non constant
$\Rightarrow f$ cannot $b=$ bounded.

Great Picard
$f: 6 \backslash\{a\} \rightarrow \sigma$ holomorphic, with essential singularity at a.
$17 \Delta^{*}(a, r) \subseteq a \backslash\{a\}$. then $f / \Delta^{*}(a, r)$ takes on all complex
numbers ∞ - many times. with at most one exception.

Great Picard is a generalization of

Casorati- Wierskap
$f: 6 \backslash\{a\} \rightarrow \sigma$ holomorphic, with essential singularity at a.
$17 \Delta^{*}(a, r) \subseteq G \backslash\{a\}$, then $f / \Delta *(a, r)$ has dense image in \in.

Great Picard

Riffle Picard
Casorati - Wisionstap
$\underline{\text { Great Picard }>\text { Little Picard Conway xII.4.4 }}$
Lemma
$f: \sigma \longrightarrow \mathbb{C}$ entire, not polynomial.
$\Rightarrow f$ asoumeo all complex values ∞ - mong times, with at most one exception.

Proof $z=t \quad g(z)=f\left(\frac{1}{2}\right): c^{x} \rightarrow \sigma$. Note that g has an isoential singularity at $0 . \Leftrightarrow g$ does not have at worst a pole at $0 \Leftrightarrow f$ does not have at worst a poke at ∞.

Recall from Math 220A, Homework σ, Problem 6 that

Entire functions with poles at wore polynomial., which is not the case for f.

Thus 9 has rosential singularity at 0. Apply Great
Picard to concluate.

We showed Great P_{i} card \Rightarrow Lemma \Rightarrow Little Picard.

Examples
11 $e^{f}+e^{g}=1$, fig entire \Rightarrow fig constant.

Indeed, $h=e^{f}$ omits 0 \& $h=1-e^{9}$ also omits 1 .

Little Picard $\Rightarrow h$ constant $\Rightarrow f i g$ constant.
[II) $f^{n}+g^{n}=1, n \geq 3, f i g$ entire $\Rightarrow f \cdot g$ constant.
(HWK 6)

Emile Picard (1856-1941).
"Une fonction entiere, qui ne devient jamais ni a ni b
est necessairment une constante" (Picard, 1879)

S2. Proof of Little Picard

Step A Landau's lemma - Conway $\times 11.2$
Step B due to Block - Conway X11.1

Assume $\exists f: \subset \longrightarrow \subset$ entire, not constant, omits 0 \& 2.

Step A produces a function g entire and $\alpha>0$ with
$\Delta \not f \mathrm{lmg}$ for all discs Δ of radius α

Step for any g entire 2 not constant, log contains a disc of any radius, in particular of radius α.

Step A \& Step B are in compatible, showing f does not exist \Rightarrow Little Picard.

Landau's Lemma

Let $h: G \longrightarrow ब$ holomorphic, G simply connected

Assume h omits -1 \& 1 . Then $\exists F: G \rightarrow 8$ holomorphic
such that $\quad h=\cos F$.

Proof Note $1-h^{2}$ is nowhere zero in $6 \Rightarrow$ let g be a square root of $1-h^{2} \Rightarrow g^{2}+h^{2}=1 \Rightarrow(g+i h)(g-i h)=1$.

Note $g+i h \neq 0$ in $G \Rightarrow \exists$ logarithm for $g+i h$. Write

$$
\begin{aligned}
g+i h=e^{i F} \Rightarrow g-i h=\frac{1}{g+i \hbar}=e^{-i F} \\
\Rightarrow g=\frac{1}{2}\left(e^{i F}+e^{-i F}\right)=\cos F .
\end{aligned}
$$

Remark In our case f entire, omits $0 \& 1 \Rightarrow$
$\Rightarrow 2 f-1$ omits $-1 \& 1 \Rightarrow$ by Landau
$\Rightarrow 2 f-1=\cos \pi F$ \& F intro.

Since $\cos \pi F=2 f-1 \neq \pm 1 \Rightarrow F$ omits all integers

Thus F omits -1 \& 1 and by Landau again
$\Rightarrow F=\cos \pi g$ \& cos πg is never an integer.

Conclusion

$$
f=\frac{1}{2}(1+\cos \pi F)=\frac{1}{2}(1+\cos \pi \cos \pi g)
$$

Define $A=\left\{m \pm \frac{\dot{i}}{\pi} \log \left(n+\sqrt{n^{2}-1}\right): n \in \mathbb{Z}>0, m \in \mathbb{Z}\right\}$

$$
\begin{aligned}
& \text { Lot } \alpha_{m n}^{ \pm}=m \pm \frac{i}{\pi} \log \left(n+\sqrt{n^{2}-1}\right) . ~ N o t \\
& \tau^{i \pi \alpha_{m n}^{t}}=e^{i \pi m} \cdot e^{-\log \left(n+\sqrt{n^{2}-1}\right)}=(-1)^{m} \frac{1}{n+\sqrt{n^{2}-1}}=(-1)^{m}\left(n-\sqrt{n^{2}-1}\right) . \\
& \left.e^{-i \pi \alpha_{m n}^{t}}=e^{-i \pi m} e^{\log \left(n+\sqrt{n^{2}-1}\right)}=(-1)^{m(n}+\sqrt{n^{2}-1}\right)
\end{aligned}
$$

$$
\Rightarrow \cos \pi \alpha_{m n}^{+}=\frac{1}{2}\left(e^{i \pi \alpha_{m n}^{+}}+e^{-i \pi \alpha_{m n}^{+}}\right)=(-1)^{m} n \in \mathbb{Z} .
$$

(The same argument works for $\alpha_{m n}$.)
But cos πg cannot be an integer.

Conclusion A $\cap \operatorname{lmg}=\Phi$.

$$
\text { Visualize } A \quad A=\left\{m \pm \frac{i}{\pi} \log \left(n+\sqrt{n^{2}-1}\right): n \in \mathbb{Z}>0, m \in \mathbb{Z}\right\}
$$

The set A gives the vertices of rectangles paving the plane. The upper half plane is paved by rectangles $R_{m n}^{+}$

- horizontal side $(m+1)-m=1$

$$
\begin{aligned}
- \text { vertical side } & \frac{1}{\pi} \log \left(n+1+\sqrt{(n+1)^{2}-1}\right)-\frac{1}{\pi} \log \left(n+\sqrt{\left.n^{2}-1\right)}=\right. \\
= & \frac{1}{\pi} \log \frac{n+1+\sqrt{(n+1)^{2}-1}}{n+\sqrt{n^{2}-1}}<1 n \\
& (\text { make } n \rightarrow \infty \text { to see boundedness). }
\end{aligned}
$$

The $\alpha_{m n}^{-}$'s are used to pave the lower half plane.

The diameter of $R_{m n}^{+}$is $5 \sqrt{1+m^{2}}$. Jet $\alpha=\sqrt{2+m^{2}}$

Claim If Δ is any disc of radius α then $\Delta ~ f \mathrm{lmg}$.

We have seen $\alpha_{m n}^{+} f / m g$. Thus $\Delta f / \mathrm{lng}$.

This completes the proof of Stop A. Step B will be dis cooed $n=x t$.

Edmund Landau (1877-1938)

Big 0 -notation
Landau's Problems (lcm 1912)

- Goldbach's conjecture
- Twin prime conjecture
- Primes of the form $n^{2}+1$
- Primes between 2 consecutive perfect square

