$$
\text { Math } 220 \mathrm{C} \text { - Weoture } 16
$$

$$
\text { May } 3,2021
$$

Zooun It - Proof of Wattle Pood (summary)

Step $A \quad f: G \longrightarrow \sigma,\{0,1\}, 6$ simply connected
(1) Write $f=\frac{1}{2}(1+\cos \pi \cos \pi g)$.
(2) lm g contains no disc of radius α.
(3) $\quad h(2)=\frac{g(R 2)}{R g^{\prime}(0)}, \quad \hbar \in O(\bar{\Delta}), \quad h^{\prime}(0)=1$.

If $R \gg 0$, we showed L contradicts Bloch.
Step (Bloch - Zeoture 15)
$h \in O(\bar{\Delta}), h^{\prime}(0)=1 \Rightarrow \operatorname{lm} h$ contains a disc of
radius β

Roadmap to Great Picard
$f: 6 \backslash\{a\} \rightarrow \pi$ holomorphic, with essential singularity at a.
$17 \Delta^{*}(a, r) \subseteq G 1\{a\}$, then $f / \Delta^{*}(a, r)$ taker on all complex
numbers ∞-many times, with at moot one exception.

Little Picard

Schottky (today)
\sqrt{V}
Strong Nontol (next time)

$$
\|
$$

Great Picard (next time)

The broad goal is to study the family

$$
\mathcal{F}=\{f: G \longrightarrow \sigma \backslash\{0,1\} \text { holomorphic }\}
$$

When $\sigma=\sigma, \mathcal{F}$ consists of constant functions.
by Little Picard
When $G=\Delta^{*}(a, r)$ this is relevant for Great Picard

Question ls F normal?

Remark To answer this question we need uniform
bounds on $\mid f(2) /$ in small discs.

SohottRy's theorem
\exists function $c(a, b)$ for $0<a<\infty$, $0<b<2$, increasing in each variable so that
$\forall f \in O(\bar{\Delta})$ omitting $0 \& 1,|f(0)|=a$. then

$$
\mid f(z) / \leq c(a, b) \text { if }(z \mid \leq b
$$

Remark The theorem controls the growth of $f \in F$
in a universal fashion provided $|f(0)|=f x e d$.

Remark $W_{\text {e will show that }}$

$$
c(a, b)=\frac{1}{2}+\frac{1}{2} \exp \pi \exp \pi\left(3+2 a+\frac{\alpha}{\beta} \cdot \frac{b}{1-b}\right)
$$

Key Claim

For each $z \in \mathbb{C}$, the equation $\cos \pi a=2$ admits a solution

$$
|a| \leq 1+|2| .
$$

Proof It is easy to check that $\cos \pi a=2$ admits a solution a. by converting into a quadrate equation in $w=e^{\pi i a}$ $\operatorname{using} \cos \pi a=\frac{w+w^{-1}}{2}=2$

Not that if a is a solution, $a+2$ is also a solution.

Thus we may assume $\operatorname{Re} a \in[-1,1] \Rightarrow|\operatorname{Re} a| \leq 1$.
Then

$$
|a| \leq|\operatorname{Rea}|+|/ \mathrm{ma}| \leq 1+|\cos \pi a|=1+|2| .
$$

$$
\text { Inequality }(x) \quad / \ln a / \leq / \cos \pi a /
$$

$$
\begin{aligned}
& \text { Proof } a=x+i y \\
& \cos \pi a=\frac{e^{\pi a i}+e^{-\pi a i}}{2}= \\
& =\frac{e^{\pi \times i} e^{-\pi y}+e^{-\pi \times i} \cdot e^{\pi y}}{2} \\
& =\cos \pi x\left(\frac{e^{\pi y}+\tau^{-\pi y}}{2}\right)+i \sin \pi x\left(\frac{e^{-\pi y}-e^{\pi y}}{2}\right) \\
& \Rightarrow|\cos \pi a|^{2}=\cos ^{2} \pi \times\left(\frac{e^{\pi y}+\tau^{-\pi y}}{2}\right)^{2}+\sin ^{2} \pi x\left(\frac{e^{-\pi y}-e^{\pi y}}{2}\right)^{2} \\
& =\left(\frac{e^{-\pi y}-e^{\pi y}}{2}\right)^{2}+\cos ^{2} \pi x \\
& =\sinh ^{2} \pi y+\cos ^{2} \pi x \\
& \geq \sinh ^{2} \pi y \geq(\pi y)^{2}>y^{2}=|\ln a|^{2} .
\end{aligned}
$$

This completes the proof.

Proof of Schottky's theorem

Step 1 Revisit Landau's Lemma

Let $f \in O(\bar{\Delta})$ omitting $\circ \& 1 \Rightarrow 2 f^{-1}$ omits $-1 \& 1$.
By Landau

$$
2 f-1=\cos \pi F \Rightarrow 2 f(0)-1=\cos \pi F(0) .
$$

By Key Claim, we may assume

$$
|F(0)| \leq 1+|2 f(0)-1|
$$

By Lecture 13 , F omito ± 1. We write

$$
F=\cos \pi g \Rightarrow F(0)=\cos \pi g(0)
$$

By Key Claim, we may assume

$$
\lg (0) \mid \leq 1+1 F(0) / \leq 1+1+/ 2 f(0)-1 / \leq 3+2 / f(0) /
$$

Conclusion $f=\frac{1}{2}(1+\cos \pi \cos \pi g)$ o

$$
/ g(0) / \leq 3+2 a \text { if } \mid f(0) /=a
$$

Slop2 Bounding g !

$\Rightarrow \operatorname{lm} h$ contains a disc of radius β
$\Rightarrow \operatorname{lm} g$ containo a disc of radius $\left.\beta(1-b) \lg ^{\prime}(a)\right)$
We ohowed in Žeature 13. Img containo no disc of radius α

$$
\begin{aligned}
& \Rightarrow \alpha \geq \beta(1-6) \operatorname{gg}^{\prime}(3) \mid \\
& \Rightarrow g^{\prime}(2) \left\lvert\, \leq \frac{\alpha}{\beta} \cdot \frac{1}{1-6} \cdot+181 \leq 6 .\right.
\end{aligned}
$$

Skep 3 Bounding g and f

We have shown ${ }^{\prime} g^{\prime}(z) \left\lvert\, \leq \frac{\alpha}{\beta} \cdot \frac{1}{1-b}\right.$ if $|z| \leq b$.

Note

$$
\begin{aligned}
\operatorname{|g}(2) \mid= & \mid g(0)+\int_{0}^{2} g^{\prime}(w) d w / \\
\leq & |g(0)|+/ \int_{0}^{2} g^{\prime}(w) d w / \\
& \quad\{\operatorname{stp}) \\
\leq & (3+2 a)+\left(\frac{\alpha}{\beta} \cdot \frac{1}{1-b}\right)|2| \\
\leq & (3+2 a)+\frac{\alpha}{\beta} \cdot \frac{b}{1-b} \quad \forall|z|=b, \quad|f(0)|=a
\end{aligned}
$$

To bound f, we need

Claim $|\cos w| \leq \exp _{\mathrm{p}}|\mathrm{w}|$

$$
\begin{aligned}
\text { Proof }|\cos w| & =/ \frac{\varepsilon^{i n}+e^{-i w}}{2} / \leq \frac{\left|\varepsilon^{i \omega}\right|+1 e^{-i w /}}{2} \\
& =\frac{e^{R_{0}(i w)}+e^{R_{e}(-, w)}}{2} \\
& \leq \frac{e^{\operatorname{inj}+e^{(-i w)}}}{2}=e^{\mid w /}
\end{aligned}
$$

Now we can finish the argument

$$
\begin{aligned}
&|f(z)|=/ \frac{1}{2}+\frac{1}{2} \cos \pi \cos \pi g(z) / \\
& \leq \frac{1}{2}+\frac{1}{2} / \cos \pi \cos \pi g(2) / \\
& \leq \frac{1}{2}+\frac{1}{2} \exp \pi / \cos \pi g(z) / \\
& \leq \frac{1}{2}+\frac{1}{2} \exp \pi=\exp \pi / g(2) / \\
&\left.\leq \frac{1}{2}+\frac{1}{2} \exp \pi \exp \pi / 3+2 a+\frac{\alpha}{\beta} \cdot \frac{b}{1-6}\right) \\
&=c(a, b) \quad \text { if } / f(0) /=a, 1 z /=b .
\end{aligned}
$$

Friedrich Schottky

(1851-1935)
Academic advisors

Karl Weierstrass

Worked on elliptic, abelian, and theta functions.

Schottky problem:
Characterization of Jacobian varieties amongst abelian varieties.

The author is of a clumsy appearance, unprepossessing, a dreamer, but if I'm not completely wrong, he possesses an important mathematical talent. [...] As rector I had to cancel his name from the register because neither had he attended lectures nor were his whereabouts in Berlin known. (Weierstrass.)

