

Last time

$$
\begin{aligned}
& \text { Mean value Property } \\
& \qquad \quad \forall a \in \sigma, \bar{\Delta}(a, r) \subseteq \sigma, u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r c^{i t}\right) d t . \\
& \text { Maximum Principle }
\end{aligned}
$$

$$
u: C \rightarrow \mathbb{R} \text { continuous \& MVI } \Rightarrow
$$

u cannot achieve a maximum (minimum) in 6 .

Notation $\partial_{\infty} G=$ extended boundary in $\hat{\sigma}=003 \infty 3$.

$$
\partial_{\infty} \sigma=/ \begin{aligned}
& \partial 6,6 \text { bounded } \\
& \partial G u\{\infty\}, 6 \text { unbounded }
\end{aligned}
$$

A stronger version (NP')
(1) $u: 6 \longrightarrow \mathbb{R}, u$ satisfos MVP in G, u continuous
(2) $\forall a \in \partial_{\infty} G: \quad \limsup u(z) \leq 0$.

Then either $u<0$ in σ or $u \equiv 0$ in G.

Proof $W=w$ shill show $u \leq 0$ in G. By the usual MP,
u cannot have a maximum in 0 unless $u=$ constant. This
give e the statement we seek. Indeed, if $\exists \alpha \in G$ with
$u(\alpha)=0 \Rightarrow \alpha$ maximum in $G \Rightarrow u \equiv 0$. Else $u(\alpha)<0, \forall \alpha \in \varepsilon$

Thus $u \equiv 0$ or $u<0$ in G.

To show $u \leq 0$, assume that $\exists \alpha \in G$ int $u(\alpha)>0$.

$$
z_{0} f \quad \varepsilon=u(\alpha)>0 .
$$

Lot $K=\{z \in G: u(z) \geq \varepsilon\}$. $\operatorname{Sin} 0=\alpha \in K \Rightarrow K \neq \Phi$.

Claim K is compact.

Assuming this, u cont., u wi ll aohive a maximum in k af
2. In particular $u(20) \geq \varepsilon$. Outside of k, $u<\varepsilon$. Thus zoo
will achieve a maximum for in u in 6 . This shows u constant

Condition (2) ensures $u=$ constant ≤ 0.

Proof of olairn $Z_{z} z_{n} \in K$. Wi show that passing to a rebseg.
z_{n} converges in K. Not $z_{n} \in \widehat{G} . \& \hat{\sigma}$ is compact. Thus wLos we may assume $z_{n} \rightarrow \mathcal{Z}^{\hat{G}} \hat{\bar{a}}$ after passing to a mubsegurnce. Not $u\left(z_{n}\right) \geq \varepsilon$. If $z \in G \Rightarrow u(z)=\lim u\left(z_{n}\right) \geq \varepsilon . \Rightarrow z^{2} \in K$. as needed. Else $\mathcal{A} \in \partial_{\infty} 6$. Then
$\limsup _{z_{n} \rightarrow z} u\left(z_{n}\right) \geq \varepsilon \quad$ which contradicts (2).

Thus K is compact.

Corollary G bounded, $u: \bar{R} \longrightarrow \mathbb{R}$ cont.. MVP,

$$
u \equiv 0 \text { on } \partial G \Rightarrow u \equiv 0 \text { in } G \text {. }
$$

Proof W_{2} use ME ${ }^{+}$. We mood to verify condition (2).

Thus $u<0$ in σ or $x \equiv 0$ in s.

Argue in the sam= aral for $-x . \Rightarrow$ either $-x<0$ in 6 or

$$
-u \equiv 0 \text { in } 6 \text {. Thus } u \equiv 0 \text { in } G \text {. }
$$

Remark $u, v: \bar{G} \longrightarrow R$ continuous \& harmonic in G.
\& G bounded. If

$$
u / \partial G=v / \partial \sigma \Rightarrow u=v \text {. in } G \text {. }
$$

Thus $u / \partial \sigma \leadsto u$ in G. uniquely.
$\int 2$. Poison Formula \& Dirichlet Problem

Question, $u: \bar{G} \longrightarrow \mathbb{R}$ continuous, harmonic in G, G bounded.

$$
u / \partial s \sim u \quad u n i g u=l y \text { in } G \text {. }
$$

Find a formula for u in 6 , from the valuer $u / 26$.

We well solve this for $G=\Delta(0,1)$. or $\Delta(a . R) . \leadsto$ Poisson Formula

Question 2 Given $f: 26 \longrightarrow \mathbb{R}$ continuous, is there
$u: \bar{G} \longrightarrow \mathbb{R}$ continuous and

$$
\left\{\begin{array}{l}
\Delta u=u_{x x}+u_{y y}=0 \\
u /_{\partial G}=f
\end{array}\right.
$$

Dirichlet Problem
(boundary value problem)

Harmonic Functions on the unit disc $\Delta=\Delta(0,1)$

Given $u: \bar{\Delta} \longrightarrow R$ continuous, harmonic in Δ.
find a formula for $u(a)$ in krmo of $u / a \Delta$.

Remark $a=0 \quad U s=M \cup E$ over the circle $(z)=r, r<1$.

This smaller circle is contained in \triangle. where u satisfies MVP.

Then

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i t}\right) d t
$$

Since u continuous over $\bar{\Delta}$, make $r \rightarrow 1$. This yields

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(0^{i t}\right) d t \text {. (To guatify the limit }
$$

use that $u\left(r e^{i t}\right) \rightarrow u\left(e^{1 t}\right)$ uniformly since u is uniformly cont.

- ven $\bar{\Delta}$).

Question: Flow about the case $a \neq 0$?

General Case

Idea: Recenter!

$$
\begin{aligned}
& \Phi: \Delta \longrightarrow \Delta, \partial \Delta \longrightarrow \partial \Delta \\
& \Phi(2)=\frac{z^{2}+a}{1+\bar{a} z}, \Phi \bar{P}(0)=a .
\end{aligned}
$$

Then $\tilde{u}=u \cdot \Phi: \bar{\Delta} \longrightarrow \mathbb{R}$ continuous. harmonic in Δ (Problem 1, HWKI)

Apply MVI to u^{2}

$$
u(a)=\tilde{u}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \tilde{u}\left(e^{i s}\right) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(\Phi\left(r^{i s}\right)\right) d s
$$

Since $\Phi\left(e^{i s}\right) \in \partial \Delta$ this aloe shows ufa) is given explicitly in terms of $u / \partial \Delta$.

Next time: We will work out a more explicit expression
\Rightarrow Poisson Integral Formula
Slogan
$M V P \rightarrow$ Put $\Delta \Rightarrow$ Poisson's formula

