$$
\begin{gathered}
\text { Math 220c - Zeotur } \\
\text { May } 12,2021
\end{gathered}
$$

Holomorphic functions

Let x be a Riemann surface, $\left(U_{\alpha}, G_{\alpha}, \varphi_{\alpha}\right)$ coordinate charts.

We showed last the that
f holomorphic iff $f \cdot \varphi_{\alpha}{ }^{-1}$ is holomorphic in $\varphi_{\alpha}\left(u \cap u_{\alpha}\right) \forall \alpha$.

Remark We can also turn this discussion around.

$$
\text { Let } x \text { be a topological space (Hausdorff, } 2^{n d} \text { countable) }
$$

$x=\bigcup_{\alpha} u_{\alpha}$ open cover. Assume we are given

- $Y_{\alpha}: u_{\alpha} \rightarrow G_{\alpha}$ homeomorphisms, $G_{\alpha} \leq \mathbb{E}$ such that

$$
\text { - } \varphi_{\beta} \varphi_{\alpha}{ }^{-\prime}: y_{\alpha}\left(u_{\alpha} n u_{\beta}\right) \rightarrow y_{\beta}\left(u_{\alpha} n u_{\beta}\right) \text { bibolomorphism }
$$

There an called compatible coadinate charts
Then \times becomes a Riemann surface.

Issue Define the sheaf θ_{x}.

Note U open $\Leftrightarrow \quad u n u_{\alpha}$ open $\Leftrightarrow \varphi_{\alpha}\left(u n u_{\alpha}\right)$ open in G_{α}.

Decare $f: u \longrightarrow \subset$ to be a section of O_{x} provided.

$$
f \in \mathcal{O}_{x}(u) \Leftrightarrow f \cdot \varphi_{\alpha}{ }^{-1} \text { holomorphic in } \varphi_{\alpha}\left(u \quad n u_{\alpha}\right) . * \alpha .
$$

Check O_{x} is indeed a sheaf. \& $\left(x, O_{x}\right)$ Riemann surface

Meromorphic funchons

Definition
f meromorphic in u provided $f \varphi_{\alpha}{ }^{-1}$ meromorphic in $\varphi_{\alpha}\left(u_{n} u_{\alpha}\right) \forall \alpha$

Not there exists a sheaf M of meromorphic functions

Zeroes, poles, order

We define the order of a pole or a zero for f to $b e$ the order of a pole or a zero for $f \varphi_{\alpha}^{-1}$ at $\varphi_{\alpha}(p)$ for $p \in u_{\alpha}$

Claim This is independent of choice of α.

Subclaim:
$Z_{0} t g$ be meromorphic in u. $a \in u . \quad Z=t T: V \rightarrow u$ bo
a biholomorphism with $T(b)=a, b \in V$. Then
g has order m at $a \Rightarrow g \circ T$ has order m at b.

We are this for $g=f \varphi_{\alpha}^{-1} \cdot a=\varphi_{\alpha}(p)$

$$
T=\varphi_{\alpha} \varphi_{\beta}^{-1}, b=\varphi_{\beta}(p) .
$$

The subclaim shows that the order thus defined is independent of the choice of α.

Proof of the Subclaim
$W L O G \quad a=b=0$, floe we can translate.

Writ $g(2)=2^{m} G(z), G(0) \neq 0$.
Since $T(0)=0$ \& $T^{\prime}(0) \neq 0$ since T is bibolomorphiom, we have $T(2)=2 S(2), \quad S(0) \neq 0$.

Not $g \cdot T(z)=T(z)^{m} G(T(z))$

$$
=z^{m} S(2)^{m} \in(T(z))
$$

Since $S(2)^{m} \in(T(z)) /_{z=0}=S(0)^{m} G(0) \neq 0 \Rightarrow$
\Leftrightarrow order g •T at $z=0$ equals m as seeded.

Remarks Essential singularities can be defined similarly.

Aside - Divisors on Riemann surfaces

Definition A divisor on a Riemannsurfaee x is a formal sum
$D=\sum_{\rho \in *} n_{\rho}[\rho]$ with $n_{p} \in \mathbb{Z}$ such that $s=\left\{p: n_{p} \neq 0\right\}$ is locally finite.

Examples
1] $X=\hat{a}, D=2[0]+3[m]-\sigma[1]$ divisor on X
(T]) D is said to be effectre if $n_{p} \geq 0 * p \in X$
([i]) Divisors can be formally added a subtracted

$$
\Delta=\sum n_{p}[p], E=\sum m_{p}[p]
$$

$\Rightarrow \Delta \pm E=\sum\left(n_{p} \pm m_{p}\right)[p]$ is a divisor

I⿴囗 restrictions, $u \leq x$ open. If

$$
D=\sum_{p \in x} n_{p}[p] \Rightarrow D / u=\sum_{p \in u} n_{p}[p]
$$

目 3 sheaf of divisors Div.

$$
u \rightarrow\{\text { divisors in } u\}
$$

IV I degree. If x is compact, any divisor is a finite sum.

$$
D=\sum n_{p}[\rho] . n_{p} \in \mathbb{Z} \Rightarrow \operatorname{deg} \Delta:=\sum_{p} n_{p} .
$$

Principal divisors if f meromorphic in X, define
(2)

$$
\begin{aligned}
\operatorname{div} f & =\sum_{x \in x} \operatorname{ard}(f, x)[*] \\
& =\sum_{z z=00} \operatorname{mult}(f)[2]-\sum_{p \text { pot }} \operatorname{mul}(f)[f)[p]
\end{aligned}
$$

(11) Check: $\operatorname{div}(f g)=\operatorname{div} f+\operatorname{div} g$.

Example $x=\hat{\epsilon} \cdot f=\frac{\prod_{i=1}^{m}\left(2-a_{i}\right)}{\prod_{i=1}^{m}\left(z-b_{i}\right)}$ meromorphic function in \bar{a}
$a_{i}, b_{i} \in \mathbb{C}$.

$$
\begin{aligned}
& \operatorname{div} f=\sum_{i=1}^{m}[a, \cdot]-\sum_{i=1}^{n}\left[b_{i}\right]+(n-m)[\infty] \\
& \Rightarrow \operatorname{deg} \operatorname{div} f=\sum_{i=1}^{m},-\sum_{i=1}^{n},+(n-m)=0 .
\end{aligned}
$$

Examples of Riemann surfaces

I not compact
(II) compact

Non - compact examples
ba $G \subseteq \mathbb{C}$ open subset is a Riemann surface
(6) $x \subseteq \mathbb{c}^{2}, X=\left\{(x, y) \in \mathbb{\pi}^{2}: f(x, y)=0\right\} \leq \mathbb{C}^{2}$?

Assume $\forall p \in X$,

$$
f_{*}(p) \neq 0 \text { or } f_{y}(p) \neq 0 .
$$

Claim X is a Riemann surface

Proof We construct charts \& show they are compatible.
$\mathcal{Z}+p \in x$.

- if $f y(p) \neq 0 \Rightarrow$ by implicit function theorem,
$\exists p \in u \subseteq x$ open such that
$y=g(x)$ for $(x, y) \in u$ where $g: V \rightarrow \mathbb{C}$ is holomorphic.

Then $U \longrightarrow G,(x, y) \longrightarrow *$ has inverse
$x \longrightarrow(x, g(x)) . \Rightarrow u$ is a chart

- If $f_{*}(p) \neq 0$, we similarly have

$$
x=h(y) \text { for }(x, y) \in u, t: H \rightarrow \sigma \text { holomorphic }
$$

Then $U \longrightarrow H$ is a chart $(x, y) \rightarrow y$ with inverse

$$
y \rightarrow(h(y), y) \quad \Rightarrow u \text { is a ohart }
$$

Compatibility Charts of the first type are dearly compahble. Some for charts of $2^{n d}$ type.

We oheok compatibility between charts of different types.
$W \angle O G$ we may assume we are around a point p with

$$
f_{n}(p) \neq 0 \& f_{y}(p) \neq 0 .
$$

Then the change of coordinates is

Both T \& T^{-1} are holomorphic, as needed.

