$$
\begin{gathered}
\text { Math } 220 \mathrm{C}-\text { Jeoture } 22^{\text {May 24, } 2021}
\end{gathered}
$$

Let x be a Riemann surface

Lot $\Delta=\sum_{p \in x} n_{p}[p]$ divisor on X.

Question A

Is every divisor D the divisor of a meromorphic function?

Answer $d=$ ponds on X.
ll non-compact $x \subseteq \mathbb{C}$ open
Yes! Weierstap Problem

If X compact - additional conditions are needed.
[द $x=\mathbb{C}^{a}$ we mod $\operatorname{deg} \Delta=0$

LiLT $x=\mathbb{A}$ we need deg $\Delta=0$ \& another condition

What is the issue?
Cover x by coodinak charts u_{α} with $u_{\alpha} \stackrel{\varphi_{\alpha}}{\cong} \sigma_{\alpha} \subseteq \sigma$.
Since we can solve the Weiesothap problem in u_{α}, we have
$D / u_{\alpha}=\operatorname{div} f_{\alpha}$, fo meromorphic in u_{α}.
Compatibility

$$
\operatorname{div} f_{\alpha} /_{u_{\alpha} n u_{\beta}}=d i v f_{\beta} / u_{\alpha} \cap u_{\beta}=D / u_{\alpha} n u_{\beta} \Rightarrow
$$

$\Rightarrow \operatorname{div} f_{\alpha} / f_{\beta}=0$ in $u_{\alpha} n u_{\beta}$
$\Rightarrow f_{0} / f_{p}$ is nowhere zero holomorphic in $u_{\alpha} \cap u_{\beta}$.

Want f meromorphic in $x, \operatorname{div} f=0$
$\Leftrightarrow \quad \operatorname{div} f / u_{\alpha}=D / u_{\alpha}=\operatorname{div} f_{\alpha}$
$\Longleftrightarrow \quad \operatorname{div} f / f_{\alpha}=0$ in u_{α}
$\Longleftrightarrow f / f_{a}$ is nowhere zero holomorphic in $u_{\alpha} \cap u_{\beta}$.

Question A (rephrased) Given
open cover $x=U u_{\alpha}, \quad u_{\alpha \beta}=u_{\alpha} n u_{\beta}$

$$
f_{\alpha} \in M^{*}\left(u_{\alpha}\right) \text { with } f_{\alpha} / f_{\beta} \in 0^{*}\left(u_{\alpha \beta}\right)
$$

wo want $f \in M^{*}(x)$ with

$$
f / f_{a} \in O^{*}\left(u_{a}\right)
$$

Notation

- O = sheaf of holomorphic functions
- $G^{*}=$ sheaf of holomorphic nonvanishing frs.
- $M=$ sheaf of meromorphic functions
- $M^{*}=$ nonzero meromorphic functions

Aside: There is a similar additive question.

Question 3

Given

$$
x=U u_{\alpha}, f_{\alpha} \text { meromorphic in } u_{\alpha}
$$

such that

$$
f_{\alpha}-f_{\beta} \in O\left(u_{\alpha} \cap u_{\beta}\right)
$$

Want f meromorphic in x with

$$
f-f_{\alpha} \in G\left(u_{\alpha}\right)
$$

Special case

- $X \subseteq \varnothing$ open, u_{α} open near $p_{\alpha}, p_{\beta} \notin u_{\alpha}$ for $\alpha \neq \beta$
- $f_{\alpha}=$ Laurent principal part near p_{α}.

This recovers Mittog - Liffler.

Rephrasing in termo of sheaves

- $\mu^{*}=$ oboof of meromorphic functions $\neq 0$

$$
\text { - Div }=\text { sheaf of divisors }
$$

$$
\text { Recall } H^{0}(x, F)=F(x) \text {. }
$$

Rephrasing Question A

$$
\text { Is } H^{\circ}\left(x, M^{*}\right) \longrightarrow H^{\circ}\left(x, D_{i v}\right)
$$

f div surjective?

Strategy for Answering Question A
We rephrase the problem using sheaf cohomology.

Goals
(1) Gohomology

For all $F \longrightarrow x$, we will define $H^{p}(x, F)$, puzo. We already have seen $H^{\circ}(x, F)$.
(III) Exact sequences of shoves

We will define. morphismo of sheaves

$$
\begin{aligned}
& \text { - exact sequences of sheaves } \\
& 0 \longrightarrow \mathcal{F} \longrightarrow \xi \longrightarrow H \rightarrow 0 .
\end{aligned}
$$

(III) Short exact sequences \& cohomology

Given $0 \longrightarrow F \longrightarrow \mathcal{H} \longrightarrow 0$ we will show

$$
0 \longrightarrow H^{\circ}(x, \mathcal{F}) \longrightarrow H^{\circ}(x, y) \longrightarrow H^{\circ}(x, \mathcal{H}) \longrightarrow
$$

$$
\longleftarrow H^{\prime}(x, \mathcal{F}) \longrightarrow H^{\prime}(x, y) \rightarrow H^{\prime}(x, \mathcal{H}) \rightarrow \ldots
$$

We assume this for now \& give the details starting
next time.

How is this relevant for us?
(a) We will show that

$$
0 \longrightarrow \mathcal{O}^{*} \longrightarrow M^{*} \xrightarrow{\operatorname{div}} \longrightarrow 0 \text { is exact. }
$$

(16) If $H^{\prime}\left(x, O^{*}\right)=0 \Rightarrow$ Queshon A YES

Indeed, $H^{\circ}\left(x, M^{*}\right) \xrightarrow{\text { div }} H^{0}\left(x, \underline{D_{i v}}\right) \longrightarrow H^{\prime}(\underbrace{x, G^{*}}_{0})$
\Rightarrow div is surjeative
(IC) In the additive case, \mathcal{O}^{*} gets replaced by O.

$$
\text { If } H^{\prime}(x, G)=0 \Rightarrow \text { Question B } r \text { ES }
$$

Queskon C Given

- $z_{1} \ldots z_{n} \in X, p_{1} \ldots p_{m} \in X$
- $\mu_{1} \ldots \mu_{n} \geq 0, v_{1}, \ldots v_{m} \geq 0$ integers

Want f meromorphic in X

- f has zeroes at 2: of order $\geq \mu$.
- f has poles at p i of order $\leq \nu_{\text {. }}$.

Other zeroes are allowed, but no other pokes.
$\mathscr{L}_{e} t D=-\sum_{i} \mu_{i}\left[z_{i}\right]+\sum_{i} v_{i}\left[p_{i}\right]$

Want $\operatorname{div} f-\sum_{i} \mu_{i}\left[2_{i}\right]+\sum_{i} v_{i}\left[p_{i}\right] \geq 0$

$$
\Leftrightarrow \quad 0+\operatorname{div} \geq 0 \text { (mon-negative coefficients). }
$$

Sheaves associated to divisors

Given a divisor 0 , we form a sheaf $O_{x}(D)$.
via the assignment

$$
u \longrightarrow\{f \text { meromorphic } \not \equiv 0 \text {, divf }+0 / u \geq 0\} u\{0\} .
$$

if u connected.

Conclusion Question C is asking to describe

$$
V_{D}=H^{\circ}\left(x, \mathcal{O}_{x}(D)\right)
$$

Gustar Roch (1839-1866)

While in Göthagen. Roch attended Tectures of Riemann.

Example $X=\mathbb{C} / \Lambda, D=d[0]$
$V_{d}=\{f=$ lliptic, f has pole at 0 of order $\leq d\}$

Claim dim $V_{d}=d$.

Proof Recall the Weierstrap Is -function

$$
f s(z)=\frac{1}{z^{2}}+\cdots
$$

\Rightarrow jos has pole of order 2 at 0
\Rightarrow Hs' has pole of order 3 at 0
$\Rightarrow \mathrm{Js}^{(k)}$ tao pole of order $k+2$ at 0 .
$\Rightarrow 1, j s, f s^{\prime}, \ldots, f^{(d-2)}$ are in $V d$.

Claim 1, js, jJ, jJ ${ }^{(d-2)}$ are independent.

Proof If

Contradictor!

Conclusion $\operatorname{dim} V_{d} \geq d$.

We will show the opposite inequality.

Claim dim $V_{d} \leq d$.

Lat f be an $=l l i p t i c$ function in $V d$. Laurent expand

$$
f=\frac{a_{-d}}{2^{d}}+\cdots+\frac{a_{-1}}{2^{2}}+a_{0}+\cdots
$$

Note $a_{-1}=\frac{1}{2 \pi i} \int_{\partial P} f d z=0$, by the Residue Theorem \& periodicity of f.

The coefficients $\left(a_{-2}, \ldots, a_{-2}, a_{0}\right) d=t e r m i n e f$ at most uniquely \Rightarrow dim $V d \leq d$.

Indeed, assume fir f_{2} are lliptic and have the same Laurent coefficients a_{-k}. Then
$f_{1}-f_{2}=$ holomorphic at 0 \& everywhere else
(by definition of V_{d}) \& 1 -periodic

$$
=\text { conotant by diouville a vanishing at } 0
$$

$$
\Rightarrow f_{1}-f_{2} \equiv 0 \Rightarrow f_{1} \equiv f_{2} .
$$

Sheaves on Riemann Surfaces

- O = sheaf of holomorphic functions
- $O^{*}=$ sheaf of holomorphic nonvanishing frs.
- $M=$ sheaf of meromorphic functions
- $M^{*}=$ nonzero meromorphic functions
- $\mathbb{I}=$ sheaf of locally constant functions
- $6^{\infty}=$ sheaf of smooth functions
- Div $=$ sheaf of divisors
- $G_{x}(D)=$ sheaf associated to divisor D.

II These sheaves solve different problems
[11) These sheaves interact with each other

