$$
\text { Math } 220 \mathrm{C} \text { - Zroture } 23
$$

$$
\text { May 26, } 2021
$$

Homological methods a sheaves
11 define morphioms
(11) define exact sequences

Morphisms of sheaves

$$
\text { F. } H \rightarrow x \text { sheaves on a topological space }
$$

A morphism of sheaves

$$
\begin{aligned}
& \alpha: F \mathcal{F} \longrightarrow G \text { consists in homomorphisms } \\
& \alpha_{u}: F(u) \longrightarrow \mathscr{H}(u) \forall u \leq x \text { open. }
\end{aligned}
$$

We require that

$$
\begin{aligned}
& \mathcal{F}(u) \xrightarrow{\alpha_{u}} \mathcal{G}(u)
\end{aligned}
$$

Remark Given $\alpha: \mathcal{F} \longrightarrow \mathcal{F}$ we obtain $\forall * \in X$

$$
\alpha_{*}: \mathcal{F}_{*} \rightarrow \mathscr{H}_{*}
$$

Why? Jut $f_{*} \in \mathcal{F}_{*}$. Represent f* by (ft), $x \in U$,

$$
f \in \mathcal{F}(u) \text {. Define }
$$

$$
\alpha_{x}\left(f_{*}\right)=\alpha(f)_{*}=\text { germ of } \alpha_{u}(f) \text { at } x \text {. }
$$

Since $\alpha$ is compatible with restrictions the definition is independent of choicer.

Exact sequences

$$
0 \longrightarrow \mathcal{F} \xrightarrow{\alpha} \xi \xrightarrow{\beta} H \rightarrow 0 \text { is exact iff }
$$

$$
\forall * \in x, 0 \longrightarrow \mathcal{F}_{*} \xrightarrow{\alpha_{*}} \mathscr{Y}_{*} \xrightarrow{\beta_{*}} \mathcal{H}_{*} \longrightarrow 0 i \text { exact. }
$$

Lemma If $0 \rightarrow \mathcal{F} \xrightarrow{\alpha} \xi \mathcal{B}^{\beta} H \rightarrow 0$ exact then $\forall u \leq x, \quad 0 \longrightarrow f(u) \xrightarrow{\alpha_{n}} y(u) \stackrel{\beta_{u}}{\longrightarrow} f(u)$ exact. open

Proof $w \angle O G u=x$. Else work with the sheaves $F / u, G / u, \mathcal{F} / u$ noting that

$$
0 \longrightarrow F / u \longrightarrow \xi / u \longrightarrow H / u \longrightarrow 0
$$

since the stalks at $x \in U$ do not change by restriction.

Remark $f=0 \Leftrightarrow f_{0}=0$ for $f$ section of a sheaf $\mathcal{F}$ Proof ". Since $f_{*}=0 \stackrel{\text { doff }}{\Rightarrow} f=0$ in $w_{*}$ a * open.

Since $x=\bigcup_{*} w_{*}$, it follow o $f=0$ in $x$ by unigueneso of gluing.
(1) $\alpha: \tilde{f}(x) \longrightarrow \xi(x)$ injeotive.

Assume $\alpha(f)=0$. For $* \in X \Rightarrow \alpha(f)_{n}=0 \Rightarrow$

$$
\left.\begin{gathered}
\Rightarrow \alpha_{*}\left(f_{*}\right)=0 \\
\alpha_{*} \text { injeative }
\end{gathered} \right\rvert\, \Rightarrow f_{*}=0 \quad \Rightarrow f=0
$$

(2) $\beta \cdot \alpha=0$ over $x$

Let $f \in \tilde{f}(x)$. Note

$$
\begin{aligned}
& (\beta \cdot \alpha)(f)_{*}=\beta_{*} \alpha_{*}\left(f_{*}\right)=0 \text { since } \\
& 0 \longrightarrow f_{*} \xrightarrow{\alpha_{*}} \xi_{*} \xrightarrow{\beta_{*}} \mathcal{F}_{*} \rightarrow 0 \text { is exact. }
\end{aligned}
$$

By the Remark we see $(\beta \cdot \alpha)(f)=0 \Rightarrow \beta \cdot \alpha=0$.
13) Kor $\beta_{x} \subseteq \operatorname{lm} \alpha_{x}$

$$
\text { Let } g \in G(x), \beta(g)=0 \text {. Then } \beta_{*}(g *)=0 \quad * * \in X
$$

$\Rightarrow \mathcal{F} f_{*} \in \mathcal{F}_{*}$ with $g_{*}=\alpha_{*}\left(f_{*}\right)$ by exactness of

$$
0 \longrightarrow \mathcal{F}_{*} \xrightarrow{\alpha_{*}} G_{*} \xrightarrow{\beta_{\pi}} \mathcal{H}_{*} \longrightarrow 0
$$

Represent the germ $f_{*}$ by a section $\left(f^{*}, U^{*}\right)$ with

$$
g=\alpha\left(f^{2}\right) \text { in } u^{*} \text {. }
$$

Note $\alpha\left(f^{*} / u^{*} n u^{y}\right)=\alpha\left(f^{y} / u^{*} \cap u^{y}\right)=g / u^{*} n u^{y}$. We
proved $\alpha$ is ingeative in Step $(0)$ so

$$
f^{*} / u^{*} n u^{y}=f^{y} / u^{*} n u^{y}
$$

By gluing, we can find $f \in \mathcal{F}(x)$ with

$$
f /_{u^{*}}=f^{*}
$$

Then $\alpha(f) / u^{*}=\alpha\left(f^{*}\right)=g / u^{*} \Rightarrow \alpha(f)=\beta$ by
sheaf axioms. This is what we needed

Remark Assume we are given

$$
0 \rightarrow F{ }^{\alpha} \mathcal{H} \xrightarrow{\beta} \mathcal{H} \longrightarrow 0 \text { such that }
$$

$$
\forall u \leq x \text { open } 0 \longrightarrow F(u) \longrightarrow \mathcal{F}(u) \longrightarrow F(u) \longrightarrow 0 \text { exact. }
$$

Then $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{H} \longrightarrow \mathcal{H} \longrightarrow 0$ exact.

Why We argue $0 \longrightarrow \mathcal{F}_{*} \xrightarrow{\alpha_{n}} \xi_{n} \xrightarrow{\beta_{*}} F_{*} \rightarrow 0$ exact.

We need to show
$y_{*} \xrightarrow{\beta_{*}} H_{*}$ is surjective. The rest is covered by
the arguments abow.

Take $h_{*} \in \mathcal{F} I_{*}$, represent it by $(h, u)$. Writ

$$
h=\beta(g) \text { since } \beta: \xi(u) \longrightarrow F /(u) \text { surjective. }
$$

Then $h_{*}=\beta_{*}\left(g_{*}\right)$ with $g_{*} \in \mathcal{G}_{*}$, as needed.

Conclusion
(1) $0 \longrightarrow F \longrightarrow \mathcal{F} \longrightarrow \mathcal{H} \longrightarrow 0$ exact $\Rightarrow$
$0 \longrightarrow \mathcal{f}(u) \rightarrow \xi(u) \longrightarrow F /(u)$ exact $\forall u \leq x$ open

Exactness on the right may fail.
(2) $/ f 0 \rightarrow F(u) \rightarrow \mathcal{G}(u) \rightarrow f(u) \rightarrow 0$ exact
for a basis of neighbor hoods \{u\} ~ i n ~ $x \Rightarrow$

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{Y} \longrightarrow H \longrightarrow 0 \text {. exact. }
$$

This follows from the argument on previous page

Three Examples - Exponential sequence
Let $x$ be a Riemann surface.

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\alpha} 0 \xrightarrow{\beta} \mathcal{O}^{*} \longrightarrow 1 \quad \text { exact }
$$

The morphisms $\alpha$ and $\beta$

$$
\alpha(1)=1, \beta(f)=e^{2 \pi i f}
$$

Why exact $\beta$ is surjeotive on a basis consisting of simply connected coordinate charts. This follows since log's of nowhere zero functions are defined by Moth 220 A.
$\qquad$
is not surjective on global sections
$X=\mathbb{\sigma}^{x}, \beta: f \longrightarrow e^{2 \pi i f}$ Note $/ m \beta_{x}$ docs not contain the $f$ unction $q$ since $\log 2$ is not defined in $\sigma^{x}$. $\Rightarrow O(x) \rightarrow G^{*}(x)$ not surjective.

Example

$$
0 \longrightarrow \mathcal{O}^{*} \xrightarrow{\alpha} M^{*} \xrightarrow{\beta} \operatorname{Div}^{\longrightarrow} 0 \text { exact. }
$$

The morphisms a and $\beta$

$$
\begin{aligned}
& \alpha(f)=f \\
& \beta(g)=\operatorname{div} g
\end{aligned} \quad \Rightarrow \beta \cdot \alpha=0
$$

Why exact

We check $\beta$ is surgectire on a basis consisting of coodinak charts. By Weiesohap Problem, in such a chart, every divisor is the divisor of a meromorphic function proving surjectivity of $\beta: M^{*} \longrightarrow$ Div.

Example Let $D=\sum n_{j}\left[p_{j}\right], n_{j} \geq 0$. Then

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{O}_{x} \xrightarrow{\alpha} \mathcal{O}_{x}(0) \xrightarrow{\beta} \pi \underbrace{\sigma_{p_{j}}^{\oplus} n_{j}} 0 \text { exact } \\
& \text { skyscraper sheaf at } p_{j} \text {. }
\end{aligned}
$$

The morphisms $\alpha$ and $\beta$

$$
\begin{aligned}
& \cdot \alpha(f)=f \Rightarrow \operatorname{div} f+\Delta \geq 0 \text { since } \Delta \geq 0, \operatorname{div} f \geq 0 \\
& \Rightarrow \alpha \text { is well }-\operatorname{defined} \\
& \cdot \beta(f)=\prod_{j}\left(c_{-n_{j}}^{\left(p_{j}\right)}, \ldots, c_{-1}^{\left(p_{j}\right)}\right) \in \prod_{j} \mathbb{C}_{p_{j}}^{\rho_{j}}
\end{aligned}
$$

where the $c$ 's are the Laurent coefficients of $f$ near $p_{j}$ :

$$
f=\frac{c_{-n_{j}}}{\left(2-p_{j}\right)_{j}^{n_{j}}}+\cdots+\frac{c_{-1}}{2-p_{j}}+\cdots
$$

Why exact
$\beta$ is surgeatire on a basis consisting of coordinak charts. by Mittag - Leffler. in open subset of $e$.

