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Schwarz Integral Formula
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Key Fact hath 220A
,

Homework 3
,

Problem 7)
.

Continuous § : {8} ✗ U → a holomorphic in a

then a → / OI 12, a) dz holomorphic
V.

Apply this to § : 2^-4 → a
, § ( 2. a) =

2- + a
-

u

:L .

2- - a

which is continuous & holomorphic in a to conclude
.

F (a) =
1- d- + a

is holomorphic in D.
2in

. / Ia Ucz) dz_
2-

12-1=7



= of Ca)

By definition , we have

I
2- = -

it
.

2- + a
F Ca) = ,÷, f - ucz) DI

2- - a 2-

12-1=7

= ÷
,
I 1+422 uceit) f alt

e - al

2)
2 'T

it
= , Re f la) =

-2€ fo Re £
. u Ce

' 't ) at afz = • •
ice -t)

i - ay2-

= ÷
,
f!
"

e
.

Ca - t ) u ee
't
) at

= U (a)
.

=3 U = Ref.

In the east line we applied Poisson 's formula for u .



Hermann Schwarz (1843-1921)

Schwarz Lemma
, Schwarz Integral Formula

Schwarz Reflection Principle , Cauchy - Schwarz Inequality

Adivor : Weier straps , Kummer

students : Feger, Koebe , Zermelo



Dirichlet Problem (for the unit disc)
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             Johann Peter Gustav Lejeune Dirichlet (1805 – 1859) 

It was his father who first went under the name “Lejeune Dirichlet” 
(meaning “the young Dirichlet”) in order to differentiate from his father, 
who had the same first name. 

“Dirichlet” (or “Derichelette”) means “from Richelette” after a town in 
Belgium. 
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We claim that u is harmonic in D
.
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.



Proof of (2)

Proper fees of the Poisson kernel

Lemma
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Conclusion I
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so we do expect continuity .

We will
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this rigorously next time .



Convolution Product

For functions g, h :[
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.


