

$$
\text { April 14, } 2021
$$

Plan - short discussion of Dirichlet Problem

- begin Ch $x_{1}-$ Jenserió formula

Last time G bounded, $f: \partial G \rightarrow \mathbb{R}$ continuous

- Perron family

$$
\mathcal{P}(G, f)=\left\{\varphi: G \longrightarrow \mathbb{R} \text { subharmonic } \limsup _{2 \rightarrow a} \varphi(2) \leq f(a) \forall a \in \partial G .\right\} \text {. }
$$

- Perron function $u: G \longrightarrow R$

$$
u(z)=\sup \{\varphi(z), \varphi \in \mathcal{P}(6, f)\}
$$

Theorem

The Perron function u is harmonic

Question Does the Perron function solve Dirichlet Problem?

What is the issue?

We know u is harmonic in G.

We need to show $\lim _{z \rightarrow a} u(z)=f(a) \quad \forall a \in \partial a$.

Answer (HWK 3,\#2) NO!

$$
\text { If } G=\Delta(0,1) \backslash 0\} \text {, we show that the Dirichlet }
$$

Problem does not always admit a solution.

Better answer In special cases, it does!
Terminology (differs from Conway \bar{x}. 4)
$Z_{n} t a$ be bounded. Z ut $a \in \partial 6$.
$\omega: \bar{\sigma} \longrightarrow \mathbb{R}$ continuous in $\bar{\sigma}$, harmonic in G,
$\omega(a)=0, \omega>0$ in $26,\{a\}$
w is raid to bo a barrier at a.

The terminology is due to Zobeggue.

Example (HWk 3, \#5) Many reasonable domains satisfy this dofrition. For instance, if 7 segment

$l \cap \bar{G}=\{a\}$ then there is a barrier at a.

Theorem The Dirichlet Problem can be always be solved in e. $\Leftrightarrow \forall a \in 26,7$ barrier at a.

The Perron function solves the Dirichlet Problem.

Remark " \Rightarrow "HWK 3, \#4
"=" A proof is given in the Appendix to the lecture.
\& Video on Canvas.
\{2. Jensen! Formula
$f: G \longrightarrow \sigma$ holomorphic, f nowhere zero in $\sigma, \bar{\Delta}(0, r) \leq G$.

Recall from HWK/
5. Let $U \subset \mathbb{C}$ be open connected.
(i) Show that if $h: U \rightarrow \mathbb{C}$ is holomorphic and nowhere zero in U, then

$$
u(z)=\log |h(z)|
$$

is harmonic in U.

Mean Value Property for $\log \mid f 1$ gives

$$
\log |f(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i t}\right)\right| d t .
$$

Question What if f has zeroes?

The zeroes of f will give corrections to the formula.

Theorem $f: G \rightarrow \mathbb{C}$ holomorphic, $\bar{\Delta}(0, r) \leq G ., f(0) \neq 0$.

Let a_{1}, \ldots, a_{k} be the zeroes of f in $\Delta(0, r)$. Then

$$
\log |f(0)|+\sum_{j=1}^{k} \log \frac{r}{\left(a_{j}\right)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(f\left(r 0^{i t}\right) \mid d t .\right.
$$

Proof Shrieking 6 , we may assume $G=\Delta(0, R)$
We may assume $r=1$. Indeed, otherwise let

$$
f^{n=w}(z)=f(-z) \text { defined in } \sigma^{n=w}=\Delta\left(0, \frac{R}{r}\right), \supseteq \bar{\Delta}(0,1) \text {. }
$$

When f is holomorphic in $\Delta(0, R) \supseteq \bar{\Delta}(0,1)$, we show

$$
\begin{equation*}
\log |f(0)|-\sum_{k=1}^{n} \log \left|a_{k}\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\tau^{i t}\right)\right| d t . \tag{w}
\end{equation*}
$$

Proof of (*) Z ot

- $a_{1}, \ldots, a_{k} \quad b=z$ eros of f in $\Delta=\Delta(0,1)$
- b_{1}, \ldots, b_{m} be zeroes of f on $a \Delta$.

Recall $\varphi_{a}: \bar{\Delta} \longrightarrow \bar{\Delta}, \partial \Delta \longrightarrow \partial \Delta, \varphi_{a}(2)=\frac{z-a}{1-\bar{a} z}$.

$$
z_{0}+F(z)=f(z) / \prod_{j=1}^{k} \varphi_{a_{j}}(z) \prod_{j=1}^{m} \frac{b_{j}}{b_{j}-z}
$$

Note that F has no zeroes in $\bar{\triangle}$. \& in fact in a neighborhood of $\bar{\Delta}$. Not

$$
F(0)=f(0) / \prod_{j=1}^{m}\left(-a_{j}\right)
$$

By the previous observation applied to F

$$
\log |F(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|F\left(e^{i t}\right)\right| d t
$$

By substitution. we find

$$
\begin{align*}
& \log |F(0)|=\log |f(0)|-\sum_{j=1}^{k} \log \left|a_{k}\right| \tag{2}\\
& \int_{0}^{2 \pi} \log \left|f\left(e^{i t}\right)\right| d t= \int_{0}^{2 \pi} \log \left|f\left(e^{i t}\right)\right| d t \\
&-\sum_{j=1}^{\pi} \int_{0}^{2 \pi} \log \mid \varphi_{a_{j}}\left(e^{i t}\right) d t \\
&+\sum_{j=1}^{m} \int_{0}^{2 \pi} \log / \frac{b_{j}}{b_{j}-t^{i t}} / d t \\
&=\int_{0}^{2 \pi} \log \left|f\left(e^{i t}\right)\right| d t . \tag{3}
\end{align*}
$$

Here we used $\varphi_{a j}: \partial \Delta \longrightarrow \partial \Delta$ so that

$$
\left|\varphi_{a j}\left(e^{i t}\right)\right|=1 \Rightarrow \log / \varphi_{a j}\left(e^{i t}\right) \mid=0
$$

Jonoen's formula follows foom (1), (2), (3).

Claim $\int_{0}^{2 \pi} \log / \frac{b}{b-e^{i t}} / d t=0 \quad \forall|6|=2$.

Proof of the claim $\mathscr{L}=t \quad b=e^{i \alpha}$. Then

$$
\begin{aligned}
\int_{0}^{2 \pi} \log & / \frac{b}{b-e^{i t}} / d t=\int_{0}^{2 \pi} \log / \frac{e^{i \alpha}}{e^{i \alpha}-e^{i t}} / d t \\
& =\int_{0}^{2 \pi} \log / \frac{1}{1-e^{i(t-\alpha \alpha}} / d t<t \rightarrow t+\alpha \\
& =\int_{0}^{2 \pi} \log \frac{1}{11-\tau^{i t} /} d t \\
& =-\int_{0}^{2 \pi} \log 11-e^{i t} / d t \quad \dot{l}^{\prime} 0 .
\end{aligned}
$$

We note that

$$
\left|1-r^{i t}\right|^{2}=(1-\cos t)^{2}+\sin ^{2} t=2-2 \cos t=4 \sin ^{2} \frac{t}{2} .
$$

We need to show

$$
\begin{aligned}
& \quad \int_{0}^{2 \pi} \log / 2 \sin \frac{t}{2} / d t=0 \Leftrightarrow \quad t=2 u \\
& \Leftrightarrow \quad \int_{0}^{\pi} \log \mid 2 \sin u / d u=0 \\
& \Leftrightarrow \int_{0}^{\pi} \log 2 d u+\int_{0}^{\pi} \log \sin u d u=0 \\
& \Leftrightarrow \int_{0}^{\pi} \log \sin u d u=-\pi \log 2 .
\end{aligned}
$$

Calculation $\int_{0}^{\pi} \log \sin u d u=-\pi \log 2$.
Convergence

$$
\int_{0}^{\pi} \log \sin u d u \leq \int_{0}^{\pi} \log u d u=u \log u-\left.u\right|_{u=0} ^{u=\pi}<\infty .
$$

This used $\lim _{u \rightarrow 0} u \log u=0$.
Evaluation

$$
\begin{aligned}
I & =\int_{0}^{\pi} \log \sin u d u J^{u=2 v} \\
& =2 \int_{0}^{\pi / 2} \log \sin 2 v d v=\underbrace{\sin \alpha v=2 \sin v \cos v .} \\
& =2 \int_{0}^{\pi / 2} \log 2 d v+2 \int_{0}^{\pi / 2} \log \cos v d v+2 \int_{0}^{\pi / 2} \log \cos v d v \\
& =\pi \log 2+2 \int_{0}^{\pi / 2} \log \sin v d v+2 \int_{0}^{\pi / 2} \log \sin \left(\frac{\pi}{2}+v\right) d v \\
& =\pi \log 2+2 \int_{0}^{\pi} \log \sin v d v \\
& =\pi \log 2+2 I \Rightarrow I=-\pi \log 2 .
\end{aligned}
$$

SUR UN NOUVEL ET IMPORTANT THÉORÈME DE LA THÉORIE DES FONCTIONS
par
J. L. W. V. JENSEN.

Monsieur le Professeur,

Lors de votre dernier séjour à Copenhague j'ai eu honneur de vous entretenir au sujet d'une intégrale définie appelée, si je ne me trompe, à jouer un rôle dans la théorie des fonctions analytiques. Comme il me parut que cette question vous interéssa vivement, je profiterai de cette occasion - l'envoi des deux petits mémoires ${ }^{1}$ destinés à votre Journal - pour vous communiquer le développement détaillé de mon théorème.

Soit $z=r e^{\theta i}$ une variable complexe, et α un nombre complexe différent de zéro, on a pour $r<|\alpha|$,

$$
l\left(\mathrm{I}-\frac{z}{\alpha}\right)=-\sum_{\nu=1}^{\infty} \frac{\mathrm{I}}{\nu}\left(\frac{z}{\alpha}\right)^{\nu}
$$

où l désigne la valeur principale du logarithme. En prenant les parties réelles des deux membres et en observant que l'on a $\mathfrak{R}(a)=\frac{1}{2}(a+\dot{a}),{ }^{2}$ on trouve
(1) $\quad l\left|{ }_{1}-\frac{z}{a}\right|=-\sum_{v=1}^{\infty} \frac{r^{v}}{2 \nu}\left(\frac{e^{20 i}}{a^{\nu}}+\frac{e^{-p o i}}{\dot{u}_{i}^{i}}\right), \quad r=|z|<|\alpha|$.
${ }^{1}$ (1) Sur les fonctions entières.
(2) Note sur une condition nécessaire et suffisante pour que tous les zéros d'une fonction entière soient réls.
${ }^{2}$ Ici et dans la suite je désigne toujours par $\mathscr{R}(a)$ la partie réelle et par \dot{a} la valeur conjuguée de a.

Aeta mathematica. 22. Imprime le 6 mars 1899.

Acta Math 1899, volume 22

Johan Jensen (1859-1925) was a Danish mathematician. He pursued mathematics while worked as a telephone engineer.

Jensen found his formula while unsuccessfully trying to prove the Riemann hypothesis.

